GNU Hyperbole Manual

The Everyday Hypertextual Information Manager

EXAMPLE.kotl - =] x

File

B B X

F 1. The Knutlinerlis a part of the Hyperbole information management system.
2. The Koutliner produces hierarchically structured files consisting of...
2a. A cell is an element of the ocutline which has its own display label...
2b. Idstamps support the creation of hyperlinks to cells which are...
Features implemented include:
3a. Full on screen editing (just like a Macintosh). Click to type in a...
3b. Advanced outline processing
Full auto-numbering im Augment (1la2) or...
By default, the Koutliner separates labels from...
{C-j} adds a new cell as a sibling following the...
{C-c C-k} kills the current cell and its...
Tree Demotion and Promotion: Trees may be demoted or...
{M-q} or {M-j} refills a paragraph within a...
In addition to normal Emacs movement commands, ...
Tree Movement and Copying: Entire ocutline trees can be moved or...
TERAMPLE. ko¥1 2]ns" " fop L1
*If your <(Info-directory-list)> or <(Info-directory)> variables include the
directory that contains the online GNU Emacs manual, activation of the next
button will tell you about <(keyboard macros)=. Can't remember a Hyperbole
Check out the Hyperbole Manual <{glossary)=.

s

term?

Here is a ={keyboard macro)= button.
first Emacs Lisp function that follows it, e.g. (hbut:report). You can SEED
that a button label can consist of a number of words, up to a set <=(maximum

Edit

3b1.
3b2.
3b3.
3b4.
3b5.
3b6.
3b7.
3p8.

length)=.
+

Next:

+

Bob Weiner

Rolo Menu, lo
fHere is an example of a simple rolo file. The date at the end is
automatically added by the role system whenever a new record is added.

Label Separators:
Cell and Tree Deletion:

Cell and Tree Filling:

T ket Fill Narrow)

Hyperbole Koutline Text Help

)Undo &8 % % Q

It displays documentation for the

<Last-Name=,

PERSONAL ROLO

W<klo rk#= F<Fax#=

*

<js@hiho.com> W788-555-2001 F78B-321-1492

Chief Ether Maintainer, HiHo Industries

This manual is for GNU Hyperbole (Edition 9.0.2pre, Published June, 2025).
Copyright (©) 1989-2025 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.3 or any later
version published by the Free Software Foundation.

GNU Hyperbole software is distributed under the terms of the GNU General
Public License version 3 or later, as published by the Free Software Foundation,
Inc.

GNU Hyperbole is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY, without even the implied warranty of MERCHANTABIL-
ITY or FITNESS FOR A PARTICULAR PURPOSE.

See the GNU General Public License for more details in the file, “COPYING”,
within the Hyperbole package directory.

Published by the Free Software Foundation, Inc.

Author: Bob Weiner
E-mail: <hyperbole-users@gnu.org> (This is a mail list).
Web: www.gnu.org/software/hyperbole

The body of the manual was written in Emacs and laid out using the GNU Texinfo markup
language.

Short Contents

1 Introduction.oiiiii i 1
2 U . e 9
3 Smart Keys ... 11
4 Buttons i 23
D Menus. ..o e 48
6 HyWiki.. ..o 53
T HyNote. ... 56
8 HyControl 57
9 Koutliner 63
10 HyRolo. ..o e e 7
11 Window Configurations. 85
12 Developing with Hyperbole......... 87
A GloSSary . .o v e 97
B Setup . oo 106
C Hyperbole Key Bindings 118
D Koutliner Keys. 122
E Smart Key Reference....... 131
F Suggestion or Bug Reporting 160
G Questions and ANSWEISoviitininnnenn.. 161
H Future Work. 163
I References 165
Key Indexo e 167
Function, Variable and File Index 172

Table of Contents

1

Introduction L. 1
1.1 Manual Overview 1
1.2 Motivation 3
1.3 Hyperbole Overviewo, 3
1.4 Mail Lists ..o 8

UsSage. . ..o 9
2.1 InvoCationt 9
2.2 Documentation...... ...t 9
2.3 Hyperbole HOOKS 10

Smart Keys..........oooiiiiiiiii. 11
3.1 Smart Key Bindings. ... 11
3.2 Smart Key Operations.........c.oouuiiiiiiiiiiiiiiiiiiann.. 11
3.3 Smart Key Argument Selection................................ 15
3.4 Smart Key Debuggingcoviiiiiiiiiiiiiiiiiiaan, 15
3.5 Smart Key Thing Selectiont 16
3.6 Smart Mouse Key Modeline Clicks.....................oooo.... 17
3.7 Smart Mouse Key Drags. ..., 18

3.7.1 Creating and Deleting Windows........................... 18
3.7.2 Saving and Restoring Window Configurations............. 19
3.7.3 Resizing Windows ... 19
3.7.4 Moving Frames 19
3.7.5 Dragging Buffers, Windows and Items..................... 19
3.7.5.1 Swapping Buffers.......... ...l 19
3.7.5.2 Displaying Buffersl 20
3.7.5.3 Cloning Windows.........cooiiiiiniiiiiii.. 20
3.7.5.4 Displaying Items. ...l 20
3.7.5.5 Keyboard Dragso 20

Buttons......... 23
4.1 Explicit Buttons. 24
4.2 Global Buttons. ... 24
4.3 TImplicit Buttons.o 25

4.3.1 Implicit Button Types........ccooiiiiiii .. 27
4.3.2 Action Buttons...........oo i 34
4.4 Button Files. ... 35
4.5 Action Types. ..ot 36
4.6 Button Type Precedence............ ... i, 42
4.7 Utilizing Explicit Buttons o 42
471 Creation.oune et e 42

4.7.1.1 Creation Via Menuscoiiiiiiiiina.. 43

ii

4.7.1.2 Creation Via Buffer Link............... 43

4.7.1.3 Creation Via Assist Key Drags....................... 43

4.72 Renamingo 44
4.7.3 Deletiono 45
4.7.4 Editing....... oo 45
4.7.5 Searching and Summarizing.............. 45
4.7.6 Buttonsin Mail 45
4.7.7 Buttonsin News....... ..., 47

5 Menus.......... 48
6 HyWiki.............. 53
6.1 HyWikiWords e 53
6.2 Publish HyWiki...... .. 54
6.3 HyWiki Menu...... ..o e 55
7 HyNote....... ... 56
8 HyControl.................. 57
9 Koutliner 63
9.1 Menu Commands.o.uuuuteittenen i, 64
9.2 Creating Outlines 65
9.3 Autonumbering. 66
9.4 TdStampPsttt e 67
9.5 Editing Outlines. ... 67
9.5.1 Adding and Killingo i, 67
9.5.2 Promoting and Demoting............... ... oo 67
9.5.3 Relocating and Copyingc.cooiiiiiiiieiiiaa.. 68
9.5.4 Moving Around......... ..ot 69
9.5.5 Filling.o 70
9.5.6 TranSpOSINgvuuttttt ettt 70
9.5.7 Splitting and Appending............. ... L. 70
9.5.8 Inserting and Importing ..., 71
9.5.9 EXPOTtingouuii e 72

9.6 Viewing Outlines ..., 72
9.6.1 Hiding and Showing, 72
9.6.2 VIEW SPECS -« vttt ittt et e e 73

0.7 KHNKS. . oot 74
0.8 Cell AttribUtesot 75

9.9 Koutliner History. ... 76

iii

10 HyRolo....... 77

10.1 HyRolo Concepts. . ..o 77

10.2 Rolo Menuo 78

10.3 HyRolo Searchingo i 80

10.4 HyRolo Keys. ..o 81

10.5 HyRolo Settings. 82

11 Window Configurations 85

12 Developing with Hyperbole.................. 87

12.1 Hook Variables...........o e 87

12.2 Creating Types. ..ot e e 88

12.2.1 Creating Action Typescoiutiiiiiiiiiiiiin 89

12.2.2 Creating Implicit Button Types.......................... 90

12.2.2.1 Action Button Link Types.............. ..., 90

12.2.2.2 TImplicit Button Link Types................o i 91

12.2.2.3 Programmatic Implicit Button Types............... 92

12.3 Explicit Button Technicalities oot 93

12.3.1 Button Label Normalization............................. 94

12.3.2 Operational and Storage Formats........................ 94

12.3.3 Programmatic Button Creation.......................... 94

12.4 Encapsulating Systemsc i 95

12.5 Embedding Hyperbole........ o i i 95

Appendix A Glossary 97

Appendix B Setup.............................. 106

B.1 Installation.......... ..o 106
B.1.1 Elpa Stable Package Installation (Emacs Package Manager) .. 106

B.1.2 Elpa In-Development Package Installation............... 106

B.1.3 Git In-Development Package

Installation (Straight Package Manager) 107

B.1.4 Manual Tarball Archive Installation..................... 108

B.2 Customizationoiiiiiii 110

B.2.1 Referent Displayccooiiiiiiiii i, 111

B.2.2 Internal VIiewersc.oiiiiiiiiiiieeniieennn.. 111

B.2.3 External Viewers........... ... 113

B.2.4 Link Variable Substitution 114

B.2.5 Web Search Engines................c.. i 114

B.2.6 Using URLs with Find-File............... 115

B.2.7 Invisible Text Searches............... ..o .. 116

B.2.8 Highlight Menu Key Toggle ...t 117

B.2.9 Configuring Button Colorsccoiii. ... 117

Appendix C Hyperbole Key Bindings......... 118

C.1 Binding Minibuffer Menu Items 118
C.2 Default Hyperbole Bindings. ..., 118
C.3 Testing .. oot e 121
Appendix D Koutliner Keys 122
Appendix E Smart Key Reference............. 131
E.1 Smart Mouse Keys. ... 131
E.1.1 Minibuffer Menu Activation............................. 131
E.1.2 Thing Selection 131
E.1.3 Side-by-Side Window Resizing........................... 132
E.1.4 Modeline Clicks and Drags................. ..ot 133
E.1.5 Smart Mouse Drags between Windows................... 134
E.1.6 Smart Mouse Drags within a Window 135
E.1.7 Smart Mouse Drags outside a Window................... 136
E.2 Smart Keyboard Keyso i, 136
E.2.1 Smart Key - Company Mode 136
E.2.2 Smart Key- Org Mode. ..., 137
E23 Smart Key - Ivy ..o 138
E.2.4 Smart Key - Treemacs 138
E.2.,5 Smart Key - Dired Sidebar Mode........................ 139
E.2.6 Smart Key - Emacs Pushbuttons........................ 139
E.2.7 Smart Key - Argument Completion...................... 139
E.2.8 Smart Key - ID Edit Mode..................coooiiiin 140
E.2.9 Smart Key - Emacs Cross-references (Xrefs) 140
E.2.10 Smart Key - Smart Scrolling 140
E.2.11 Smart Key - Smart Menusoooa.. 141
E.2.12 Smart Key - Dired Mode. ...l 141
E.2.13 Smart Key - Magit Modec..oooi.. 142
E.2.14 Smart Key - Delimited Things 142
E.2.15 Smart Key - Hyperbole Buttons........................ 142
E.2.16 Smart Key - View Mode 143
E.2.17 Smart Key - Helm Modet 143
E.2.18 Smart Key - ERT Results Mode........................ 144
E.2.19 Smart Key - Occurrence Matches....................... 144
E.2.20 Smart Key - The Koutliner...................... 144
E.2.21 Smart Key - Flymake Mode............................ 145
E.2.22 Smart Key- RDBMode ..., 146
E.2.23 Smart Key - Help Buffers, 146
E.2.24 Smart Key - Custom Mode............................. 146
E.2.25 Smart Key - Bookmark Mode 147
E.2.26 Smart Key - Pages Directory Mode..................... 147
E.2.27 Smart Key - Python Source Code 147
E.2.28 Smart Key - C Source Code..............oooiiiiii... 148
E.2.29 Smart Key - C+4 Source Codeoooi.n. 148

E.2.30 Smart Key - Assembly Source Code.................... 149

E.2.31
E.2.32
E.2.33
E.2.34
E.2.35
E.2.36
E.2.37
E.2.38
E.2.39
E.2.40
E.2.41
E.2.42
E.2.43
E.2.44
E.2.45
E.2.46
E.2.47
E.2.48
E.2.49
E.2.50
E.2.51
E.2.52

Smart Key - Lisp Source Code 149
Smart Key - Java Source Code 150
Smart Key - JavaScript Source Code 150
Smart Key - Objective-C Source Code.................. 151
Smart Key - Fortran Source Code...................... 151
Smart Key - Identifier Menu Mode 152
Smart Key - Calendar Mode 152
Smart Key - Man Page Apropos........................ 152
Smart Key - Emacs Outline Mode...................... 153
Smart Key - Info Manuals.............. 153
Smart Key - Email Readers............................ 154
Smart Key - GNUS Newsreader 155
Smart Key - Buffer Menus 156
Smart Key - Tar File Mode, 156
Smart Key - Man Pages............ ...t 157
Smart Key - WWW URLs ..., 157
Smart Key - HyRolo Match Buffers 157
Smart Key - Image Thumbnails 157
Smart Key - Gomoku Game...................cooouu... 157
Smart Key - The OO-Browser.......................... 158
Smart Key - Todotext Mode 159
Smart Key - Default Context........................... 159

Appendix F Suggestion or Bug Reporting.... 160

Appendix G Questions and Answers........... 161
Appendix H Future Work 163
Appendix I References......................... 165
Key Index..........c i, 167
Function, Variable and File Index............... 172

Concept Index ... 178

vi

1 Introduction

This edition of the GNU Hyperbole Manual is for use with any version 9.0.2pre or greater
of GNU Hyperbole. Hyperbole runs atop GNU Emacs 28 or higher. It will trigger an error
if your Emacs is older.

This chapter summarizes the structure of the rest of the manual, describes Hyperbole,
lists some of its potential applications, and explains how to subscribe to its mail lists.

Throughout this manual, sequences of keystrokes are delimited by curly braces { };
function and variable names use this typeface.

In brief, Hyperbole lets you:

e Quickly create typed hyperlink buttons either from the keyboard or by dragging be-
tween a source and destination window with a mouse button depressed. Activate
Hyperbole buttons by pressing/clicking on them or by name;

e Activate many kinds of implicit buttons recognized by context within text buffers, e.g.
URLs, pathnames with section anchors, grep output lines, and git commits. A single
key, {M-RET}, or mouse button automatically does the right thing in dozens of contexts;
just press and go;

e Build outlines with multi-level, numbered outline nodes, e.g. 1.4.8.6, that all renumber
automatically when any cell (node) or tree is moved in the outline. Each cell also has
a permanent hyperlink anchor that you can reference from any other cell;

e Manage all your contacts or record-based, unstructured texts quickly with hierarchical
categories; each entry can have embedded hyperbuttons of any type. Or create an
archive of documents with hierarchical entries and use the same search mechanism to
quickly find any matching entry;

e Use single keys to easily manage your Emacs windows or frames and quickly retrieve
saved window and frame configurations;

e Search for things in your current buffers, in a directory tree or across major web search
engines with the touch of a few keys.

1.1 Manual Overview

Hyperbole is an efficient, programmable hypertextual information management system. It
is intended for everyday work on any GNU Emacs platform. Hyperbole allows hypertext
buttons to be embedded within unstructured and structured files, mail messages and news
articles. It offers intuitive keyboard and mouse-based control of information display within
multiple windows. It also provides point-and-click access to Info manuals, ftp archives, the
World-Wide Web and much more.

This is a reference manual with extensive details about Hyperbole use. If you prefer a
simpler, more interactive introduction to Hyperbole, the ../FAST-DEMO file included in the
Hyperbole distribution demonstrates many of Hyperbole’s standard facilities without the
need to read through this reference manual. The ../FAST-DEMO is a good way to rapidly
understand some of what Hyperbole can do for you. Once Hyperbole is installed, (see
Appendix B [Setup], page 106), you can access the ../FAST-DEMO with the key sequence
{C-h h d d}.

Chapter 1: Introduction 2

See Appendix A [Glossary], page 97, for definitions of Hyperbole terms. In some cases,
terms are not precisely defined within the body of this manual since they are defined within
the glossary. Be sure to reference the glossary if a term is unclear to you. Although you
need not have a keen understanding of all of these terms, a quick scan of the glossary helps
throughout Hyperbole use.

See Appendix B [Setup|, page 106, for explanations of how to obtain, install, configure
and load Hyperbole for use. This appendix includes information on user-level settings that
you may want to modify after you understand Hyperbole’s basic operation.

See Appendix F [Suggestion or Bug Reporting], page 160, for instructions on how to
ask a question, suggest a feature or report a bug in Hyperbole. A few commonly asked
questions are answered in this manual, see Appendix G [Questions and Answers|, page 161.
If you are interested in classic articles on hypertext, see Appendix I [References|, page 165.

See Chapter 3 [Smart Keys], page 11, for an explanation of the innovative, context-
sensitive mouse and keyboard Action and Assist Keys offered by Hyperbole. See Appendix E
[Smart Key Reference], page 131, for a complete reference on what the Action and Assist
Keys do in each particular context they recognize. See Section 3.3 [Smart Key Argument
Selection], page 15, for how Hyperbole speeds selection of values when prompting for argu-
ments.

Keep in mind as you read about using Hyperbole that in many cases, it provides a number
of overlapping interaction methods that support differing work styles. In such instances,
you need learn only one technique that suits you.

See Chapter 4 [Buttons], page 23, for an overview of Hyperbole buttons and how to use
them. Hyperbole’s action-oriented button support is enabled via the global minor mode,
hyperbole-mode.

See Chapter 5 [Menus], page 48, for summaries of Hyperbole menu commands and how
to use the minibuffer-based menus that work on any display that Emacs supports.

See Chapter 6 [HyWiki], page 53, for Hyperbole’s markup-free, personal Wiki system
for note-taking and automatic WikiWord highlighting and hyperlinking. It extends Org
mode. HyWikiWord hyperlink buttons are automatically enabled for wiki pages below
hywiki-directory. To enable them in text buffers outside of this directory, enable the
global minor mode, hywiki-mode.

See Chapter 7 [HyNote], page 56, for a start on the very early stages of Hyperbole’s
multi-format note taking system. HyNote supports Org, Markdown, Koutline and Emacs
Outline file formats. HyNote works in any buffer where HyWiki support is active.

See Chapter 8 [HyControl], page 57, for how to quickly and interactively control what
your Emacs windows and frames display and where they appear.

See Chapter 9 [Koutliner|, page 63, for concept and usage information on the auton-
umbered, hypertextual outliner. It uses its own major mode. See Appendix D [Koutliner
Keys], page 122, for a full summary of the outliner commands that are bound to keys.

See Chapter 10 [HyRolo|, page 77, for concept and usage information on the rapid lookup,
hierarchical, full-text record management system included with Hyperbole.

See Chapter 11 [Window Configurations], page 85, for instructions on how to save and
restore the set of buffers and windows that appear within a frame. This feature lets you

Chapter 1: Introduction 3

switch among working contexts easily, even on a dumb terminal. Such configurations last
throughout a single session of editor usage only.

See Chapter 12 [Developing with Hyperbole], page 87, if you are a developer who is
comfortable with Lisp.

See Appendix H [Future Work], page 163, for future directions in Hyperbole’s evolution.

1.2 Motivation

Database vendors apply tremendous resources to help solve corporate information manage-
ment problems. But the information that people deal with in their everyday worklife is
seldom stored away in neatly defined database schemas. Instead it is scattered among local
and remote files, e-mail messages, faxes, voice mail and web pages.

The rise of the web has demonstrated how hypertext technologies can be used to build
massive organized repositories of scattered information. But assembling information for the
web still remains a great challenge and the data formats of the web are too structured to
de‘al with the wide variety of information that people process. Modern web development
requires the use of many languages: HTML, JavaScript, and CSS. This in itself prevents its
use as the prime means of organizing and interlinking the constant flows of daily information.

GNU Hyperbole takes a distinctly different approach. It has its own hypertext technology
that can interface perfectly with web links but which are much easier to create (simply
drag from the source to the destination of a link to create a new hyperlink). Hyperbole
hyperbuttons can link not only to static information but can perform arbitrary actions
(through the use of button types written in a single, highly interactive language, Emacs
Lisp). Hyperbole adds all of this power to your written documents, e-mail, news articles,
contact management, outlines, directory listings, and much more. Hyperbole works well
with the very latest versions of GNU Emacs across every editing and viewing mode in
FEmacs. It’s core hypertext capabilities operate as a global minor mode available across
most file types, unlike Org mode which is its own structured file format.

Unlock the power of GNU Hyperbole to make your information work for you. One
system. One language. One manual. One solution. Learn Hyperbole and start moving
further, faster.

1.3 Hyperbole Overview

GNU Hyperbole (pronounced Ga-new Hi-per-bo-lee), or just Hyperbole, is like Markdown
for hypertext. Hyperbole automatically recognizes dozens of common, pre-existing patterns
in any buffer regardless of mode and can instantly activate them as hyperbuttons with a
single key: email addresses, URLs, grep -n outputs, programming backtraces, sequences of
Emacs keys, programming identifiers, Texinfo and Info cross-references, Org links, Mark-
down links and on and on. All you do is load Hyperbole and then your text comes to life
with no extra effort or complex formatting.

Hyperbole includes easy-to-use, powerful hypertextual button types without the need to
learn a markup language. Hyperbole’s button types are written in Lisp and can be wholly
independent of the web, i.e. web links are one type of Hyperbole link, not fundamental
to its link architecture. However, Hyperbole is a great assistant when editing HTML or
Javascript or when browsing web pages and links.

Chapter 1: Introduction 4

Hyperbole comes pre-built with most of the implicit button types you will need but
with a little extra effort and a few lines of code (or even just a few words), you can define
your own implicit button types to recognize your specific buttons and then activate them
anywhere in Emacs. You press a single key, {M-RET} by default, on any kind of Hyperbole
button to activate it, so you can rely on your muscle memory and let the computer do the
hard work of figuring out what to do. {C-u M-RET} shows you what any button will do in
any context before you activate it, so you can always be sure of what you are doing when
needed or if someone emails you a button (Hyperbole allows embedding buttons in email
messages t00).

Hyperbole is something to be experienced and interacted with, not understood from
reading alone. It installs normally as a single Emacs package with no dependencies outside
of built-in Emacs libraries, see Section B.1 [Installation], page 106. Most of Hyperbole is
a single global minor mode that you can activate and deactivate at will. And it can be
uninstalled quickly as well if need be, so there is no risk in giving it a spin.

Once you have it installed, try the interactive demo with {C-h h d d}. In fact, if you
have Hyperbole loaded and you use the Emacs Info reader to read this manual, you can
press {M-RET} inside any of the brace delimited series of keys you see in this document and
Hyperbole will execute them on-the-fly (easy keyboard-macro style buttons in any text).

Hyperbole can dramatically increase your productivity and greatly reduce the number
of keyboard/mouse keys you’ll need to work efficiently.

Chapter 1: Introduction 5

Hyperbole consists of five parts.

Buttons and Smart Keys
There are three categories of buttons:

explicit buttons
may be added to documents with a simple drag between windows,
no markup language needed. With two windows on screen, an
explicit link button can be created at point in the current buffer
linking to the position in the other window’s buffer by pressing
{C-hh e 1}.

Implicit buttons
are patterns automatically recognized within existing text that per-
form actions, e.g. bug#24568 displays the bug status information
for that Emacs bug number, without the need for any additional
markup. Implicit link buttons can be added to documents with a
simple drag between windows too.

Or from the keyboard, With two windows on screen, an implicit
link button can be created at point in the current buffer linking
to the position in the other window’s buffer by pressing {C-h h i
1}. Use {M-1 C-h h i 1} instead to be prompted for a name for
the implicit button.

Global buttons
are buttons that are activated by name from anywhere within
Emacs. They may be either explicit or named implicit buttons.
They are the named buttons stored in the a user’s personal button
file, directly editable from the minibuffer menu with {C-h h b p}.

With two windows on screen, a global explicit link button can be
created at point in the current buffer linking to the position in the
other window’s buffer by pressing {C-hh g 1}. Use {C-uC-hh g
1} instead to create a named global implicit button.

Buttons are activated by pressing {M-RET} on them, clicking them with a ded-
icated mouse button, or by referencing them by name (global buttons that can
be activated regardless of what is on screen). Users create and activate Hy-
perbole buttons; see Chapter 4 [Buttons|, page 23. Emacs Lisp programmers
can develop new button types and actions. See Section 12.2 [Creating Types],
page 88.

Hyperbole includes two special Smart Keys, the Action Key and the Assist Key,
that perform an extensive array of context-sensitive operations across emacs
usage, including activating and showing help for Hyperbole buttons. In many
popular Emacs modes, they allow you to perform common, sometimes complex
operations without having to use a different key for each operation. Just press
a Smart Key and the right thing happens. The mouse versions of these keys
additionally allow for drag actions. We call these the Action Mouse and Action
Assist keys or buttons. See Chapter 3 [Smart Keys|, page 11.

Chapter 1: Introduction 6

HyRolo

HyControl

Koutliner

a powerful, hierarchical contact manager which anyone can use, is also included.
It is easy to learn since it introduces only a few new mechanisms and has a menu
interface, which may be operated from the keyboard or the mouse. It may also
be used for full-text searching over any record-based information in any number
of Org, Markdown, Koutline or Emacs Outline files. Hyperbole buttons may
be embedded in any records. See Chapter 10 [HyRolo], page 77.

the fastest, easiest-to-use window and frame control available for GNU Emacs.
With just a few keystrokes, you can shift from increasing a window’s height by
5 lines to moving a frame by 220 pixels or immediately moving it to a screen
corner. Text in each window or frame may be enlarged or shrunk (zoomed)
for easy viewing, plus many other features; this allows Hyperbole to quickly
control the way information is presented on-screen. See Chapter 8 [HyControl],
page 5H7.

an advanced outliner with multi-level autonumbering and permanent identi-
fiers attached to each outline node for use as hypertext link anchors, per node
properties and flexible view specifications that can be included in links or used
interactively. See Chapter 9 [Koutliner], page 63.

Hyperbole API

a set of programming libraries for system developers who want to integrate
Hyperbole with another user interface or as a back-end to a distinct system.
(All of Hyperbole is written in Emacs Lisp for ease of modification. It has
been engineered for real-world usage and is well structured). See Chapter 12
[Developing with Hyperbole], page 87.

Hyperbole may be used simply for browsing through documents pre-configured with
Hyperbole buttons, in which case, you can safely ignore most of the information in this
manual. Jump right into the Hyperbole fast demonstration by typing {C-h h d d}, assuming
Hyperbole has been installed at your site. If you need to install Hyperbole, see Appendix B
[Setup], page 106, for Hyperbole installation and configuration information. The demo
offers a much less technical introduction to Hyperbole by supplying good examples of use.

Chapter 1: Introduction 7

Minibuf-1 = =] x

File Edit Options Buffers Tools Hyperbole Help

e = P =
 SEY B Q
+/# Explicit Button Samples
Hyperbole is pretty forgiving about the format of explicit buttons. For
example, all of the following represent the same button, as long as one
clicks on the *first* line of the button, within the button delimiters: I
={factorial button)=
={ factorial button)=

Pam= <=({factorial
Pam= button)=

i: =<(factorial

HH button}=
f* < factorial *
i button)= */

If your <{Info-directory-list)> or <({Info-directory)> variables include the
directory that contains the online GNU Emacs manual, activation of the next
button will tell you about ={keyboard macros)=. Can't remember a Hyperbole
term? Check out the Hyperbole Manual =(glossary)=.

+
-:%%- DEMO 19% of 20k (189.8) {Help)
Hy5.12= Act Butfile/ Cust/ Doc/ Ebut/ Find/ Gbut/ Hist Ibut/ Keotl/ Msg/ Rolo/ Screen/ Hin!l

Image 1.1: Hyperbole Minibuffer Menu and Demonstration Screenshot

You likely will want to do more than browse with Hyperbole, e.g. create your own
buttons. The standard Hyperbole button editing user interface is Emacs-based, so a basic
familiarity with the Emacs editing model is useful. The material covered in the Emacs
tutorial, normally bound to {C-h t}, is more than sufficient as background. See Section
“Glossary” in the GNU Emacs Manual, if some emacs-related terms are unfamiliar to you.

A Hyperbole user works with chunks of information that need to be organized, inter-
linked, and processed. Such chunks can be hyperbuttons, address book contacts, items in an
outline, or even database query results. Hyperbole does not enforce any particular hyper-
text or information management model, but instead allows you to organize your information
in large or small chunks as you see fit. The Hyperbole outliner organizes information into
hierarchies which may also contain links to external information sources. See Chapter 9
[Koutliner|, page 63.

Some of Hyperbole’s most significant features are:

e Buttons may link to information or may execute functions, such as starting or commu-
nicating with external programs;

e A simple mouse drag from a button source location to its link destination is often all
that is needed to create a new link. The keyboard can also be used to emulate such
drags;

e Buttons may be embedded within electronic mail messages;

Chapter 1: Introduction 8

e Qutlines allow rapid browsing, editing and movement of chunks of information orga-
nized into trees (hierarchies);

e Other hypertext and information retrieval systems may be encapsulated under a Hy-
perbole user interface (a number of samples are provided).

Typical Hyperbole applications include:

personal information management
Hyperlinks provide a variety of views into an information space. A search
facility locates hyperbuttons in context and permits quick selection.

documentation and code browsing
Cross-references may be embedded within documentation and code. Existing
documentation may be augmented with point-and-click interfaces to link code
with associated design documents, or to permit direct access to the definition
of identifiers by selecting their names within code or other documents.

brainstorming
The Hyperbole outliner (see Chapter 9 [Koutliner|, page 63) is an effective
tool for capturing ideas and then quickly reorganizing them in a meaningful
way. Links to related ideas are easy to create so the need to copy and paste
information is greatly reduced.

help /training systems
Tutorials with buttons can show students how things work while explaining the
concepts, e.g. an introduction to the commands available on a computer system.
This technique can be much more effective than written documentation alone.

archive managers
Programs that manage archives from incoming information streams may be
supplemented by having them add topic-based buttons that link to the archive
holdings. Users can then search and create their own links to archive entries.

1.4 Mail Lists

If you use Hyperbole, you may join the mailing list <hyperbole-users@gnu.org> to discuss
Hyperbole with users and maintainers. There is a separate mail list to report problems
or bugs with Hyperbole, <bug-hyperbole@gnu.org>. For more details, see Appendix F
[Suggestion or Bug Reporting], page 160.

2 Usage

Once Hyperbole has been installed for use at your site, loaded into your Emacs session and
activated with (hyperbole-mode 1), it is ready for use. You will see a Hyperbole menu on
your menubar and Hypb in your modeline.

2.1 Invocation

You can invoke Hyperbole’s commands in one of three ways:
e use the Hyperbole entry on your menubar;
e type {C-h h} or {M-x hyperbole RET} to display the Hyperbole minibuffer menu;

e use a specific Hyperbole command, for example, a press of {M-RET} on a pathname to
display the associated file or directory.

{C-h h} enables Hyperbole if it has been disabled and displays a Hyperbole menu in
the minibuffer for quick keyboard or mouse-based selection. Select an item from this menu
by typing the item’s first capital letter. Use {Q} (note this is capitalized) to quit from the
minibuffer menu while leaving Hyperbole enabled. Use {X} (note this is capitalized) to quit
from the minibuffer menu and disable Hyperbole’s minor mode.

Use {C-h h d d} for an interactive demonstration of standard Hyperbole button capa-
bilities.

Type {C-h h k e} for an interactive demonstration of the Koutliner, Hyperbole’s multi-
level autonumbered hypertextual outliner.

To try out HyControl, Hyperbole’s interactive frame and window control system, use
{C-h h s w} for window control or {C-h h s £} for frame control. Pressing {t} switches
between window and frame control once in HyControl. Hyperbole also binds {C-c \} for
quick access to HyControl’s window control menu if it was not already bound prior to
Hyperbole’s initialization.

Videos demonstrating Hyperbole’s features are listed at https://gnu.org/s/
hyperbole.

The above are the best interactive ways to learn about Hyperbole.

2.2 Documentation

The Hyperbole Manual is a reference manual, not a simple introduction. It is included in
the man/ subdirectory of the Hyperbole package directory in four forms:

man/hyperbole.info - online Info browser version
man/hyperbole.html - web HTML version
man/hyperbole.pdf - printable version
man/hyperbole.texi - source form

The Hyperbole package installation places the Info version of this manual where
needed and adds an entry for Hyperbole into the Info directory under the Emacs
category. {C-hhd i} will let you browse the manual. Then use {s} to search
for anything throughout the manual. For web browsing, point your browser to
${hyperb:dir}/man/hyperbole.html, wherever the Hyperbole package directory is on
your system; often this is: ~/.emacs.d/elpa/hyperbole-${hyperb:version}/.

https://gnu.org/s/hyperbole
https://gnu.org/s/hyperbole

Chapter 2: Usage 10

2.3 Hyperbole Hooks

When Hyperbole’s code is first loaded and initialized, hyperbole-init-hook is run. When
hyperbole-mode is enabled, hyperbole-mode-hook and hyperbole-mode-on-hook are run.
When hyperbole-mode is disabled, hyperbole-mode-hook and hyperbole-mode-off-hook
are run.

If you prefer a different key to activate Hyperbole, you can bind it as part of any setting
of hyperbole-init-hook within your personal ~/.emacs file. For example:

(add-hook 'hyperbole-init-hook
(lambda () (global-set-key
"\C-ch" 'hyperbole--enable-mode)
(global-set-key
"\C-hh" 'view-hello-file)))

then restart Emacs.

11

3 Smart Keys

When active, Hyperbole offers two special Smart Keys, the Action Key and the Assist Key,
that perform an extensive array of context-sensitive operations across emacs usage. In many
Emacs modes, they allow you to perform common, sometimes complex operations without
having to use a different key for each operation. Just press a Smart Key and the right thing
happens. This chapter explains typical uses of the Smart Keys. See Appendix E [Smart
Key Reference], page 131, for complete descriptions of their behavior in all contexts.

3.1 Smart Key Bindings

With hyperbole-mode enabled, {M-RET} is the Action Key and {C-u M-RET} is the Assist
Key. These keys allow context-sensitive operation from any keyboard.

Mouse configuration of the Smart Keys is automatic for GNU Emacs under Mac OS X,
the X Window System and MS Windows, assuming your emacs program has been built
with support for any of these window systems.

The Action Mouse Key is bound to your shift-middle mouse key (or shift-left on a 2-
button mouse). The Assist Mouse Key is bound to your shift-right mouse key, assuming
Hyperbole is run under an external window system. These keys support Drag Actions, see
Section E.1 [Smart Mouse Keys|, page 131, as well as the standard Smart Key presses.

If you set the variable, hmouse-middle-flag, to ‘t’ before loading Hyperbole, then you
may also use the middle mouse key as the Action Key. If you want both the middle mouse
key as the Action Key and the right mouse key as the Assist Key for ease of use, then within
your personal ~/.emacs file, add:

(add-hook 'hyperbole-init-hook
'hmouse-add-unshifted-smart-keys)
and then restart Emacs.
If you prefer other Smart Key bindings, simply bind the commands action-key and
assist-key to keyboard keys. Hyperbole binds {M-RET} to the command hkey-either;

this provides a single key binding for both Smart Key commands; a prefix argument, such
as {C-u}, then invokes assist-key actions.

You may also bind action-mouse-key and assist-mouse-key to other mouse keys,
though you won’t be able to execute mouse drag actions with such key bindings. See
Section 3.7 [Smart Mouse Key Drags], page 18, and see Section 3.7.5.5 [Keyboard Drags],
page 20.

To permanently change any of these key bindings, use:

(add-hook 'hyperbole-init-hook
(lambda () (hkey-set-key <KEY> '<CMD>)

for example, (hkey-set-key "\M-'" 'hkey-either).

3.2 Smart Key Operations

The Action Key generally selects entities, creates links and activates buttons. The As-
sist Key generally provides help, such as reporting on a button’s attributes, or serves a
complementary function to whatever the Action Key does within a context.

Chapter 3: Smart Keys 12

The Hyperbole Doc/SmartKeys menu entry, {C-h h d s}, displays a summary of what
the Smart Keys do in all of their different contexts. Alternatively, a click of the Assist
Mouse Key in the right corner of a window modeline (within the rightmost 3 characters)
toggles between displaying this summary and hiding it. Reference this summary whenever
you need it.

The following table is the same summary. Much of the browsing power of Hyperbole
comes from the use of the Smart Keys, so spend some time practicing how to use them.
Study what modeline clicks and window drag actions do as these will give you a lot of
power without much effort. This table may appear daunting at first, but as you practice
and notice that the Smart Keys do just a few context-sensitive things per editor mode, you
will find it easy to just press or point and click and let Hyperbole do the right thing in each
context.

Smart Keys
Context Action Key Assist Key
Hyperbole
On a minibuffer menu item Activates item Item help
On an explicit button Activates button Button help

Reading argument
1st press at an arg value Copies value to minibuffer <- same

2nd press at an arg value Uses value as argument <- same

In minibuffer at eol Accepts minibuffer arg List completions

In minibuffer before eol Deletes rest of arg Deletes rest of arg
On an implicit button/path Activates button/path Button help
Within a koutline cell Collapses and expands Shows tree props
Left of a koutline cell Creates a klink Moves a tree
HyRolo Match Buffer Edits entries and mails to e-mail addresses

Mouse or Keyboard Display Control
Line end, not end of buffer
smart-scroll-proportional

=t (default) Makes curr line top line Bottom line

= nil Scrolls up a windowful Scrolls down
End of Any Help buffer Restores screen to the previous state
Read-only View Mode Scrolls up a windowful Scrolls wind down

Mouse-only Control
Drag from thing start or end Yanks thing at release Kills thing and yanks
A thing is a delimited at release
expression, such as a
string, list or markup
language tag pair

Drag from bottom Modeline Repositions frame as <- same
in frame with non-nil drag happens

drag-with-mode-line param

Drag from shared window side

or from left of scroll bar Resizes window width <- same
Modeline vertical drag Resizes window height <- same
Other Modeline drag to Replaces dest. buffer Swaps window buffers

another window with source buffer

Chapter 3: Smart Keys

Drag to a Modeline from:
but/buffer/file menu item

buffer/file menu 1st line
anywhere else

Drag between windows from:
but/buffer/file menu item

buffer/file menu 1st line
anywhere else

Drag outside of Emacs from:
but/buffer/file menu item

Modeline or other window

Modeline Click
Left modeline edge
Right modeline edge
Buffer ID

Other blank area

Drag in window, region active
Horizontal drag in a window
Vertical drag in a window
Diagonal drag in a window

Active region exists, click
outside of the region

Displays ref/buffer/file
in new window by release
Moves buffer/file menu to
new window by release
Displays buffer in
new window by release

Displays ref/buffer/file

13

Swaps window buffers
Swaps window buffers

Swaps window buffers

<- same

in window of button release

Moves buffer/file menu
Creates an ibut link

Displays ref/buffer/file
in a new frame
Clones window to new frame

Buries current buffer
Displays GNU Info manuals
Dired on buffer's dir
or on parent when a dir
Action Key modeline hook
Shows/Hides Buffer Menu

Error, not allowed

Splits window below

Splits window side-by-side
Saves wconfig

Yanks region at release

Hyperbole Key Press/Click in Special Modes

Region Active

Company Mode Completion
Helm Completion

Emacs Push Button

Emacs Regression Test Def
Thing Begin or End

Flymake Linter Mode

Page Directory Listing
C,C++,0bjective-C,Java Modes
Assembly Language Mode

Java Cross-reference Tag
JavaScript and Python Modes
Any Known Lisp or Changelog
Fortran Mode

Imenu Programming Identifier
Emacs Lisp Compiler Error
Emacs Regression Test (ERT)
Other Compiler Error

Grep or Occur Match
Multi-buffer Occur Match
Etags "TAGS' file entry
Ctags file entry

Yanks region at release
Displays definition
Displays item

Activates button

Evals and runs test
Marks thing region
Jumps to issue at point
Jumps to page

Jumps to id/include
Jumps to id/include
Jumps to identifier
Jumps to identifier
Jumps to identifier def
Jumps to identifier def
Jumps to in-buffer def
Jumps to def with error
Jumps to def with error
Jumps to src error line
Jumps to match source line
Jumps to match source line
Jumps to source line

Jumps to source line

def
def
def
def

<- same
Creates an ebut link

Moves window to new frame

Moves window to new frame

Unburies bottom buffer
Displays Smart Key summary
Displays next buffer

Assist Key modeline hook
Popups Screen & Jump Menus

Error, not allowed

Deletes window

Deletes window

Restores wconfig from ring

Kills and yanks at release

Kills and yanks at release
Displays documentation
Displays item

Button help

Edebugs and runs test
Marks & kills thing region
Displays issue at point

<- same

Jumps to next def
Jumps to next def
Jumps to next def
Jumps to next def
Referent Doc
Jumps to next def
Prompts for id to jump to
<- same

<- same

<- same

<- same

<- same

Button help
Button help

Chapter 3: Smart Keys

Texinfo Cross-reference
Before opening brace
Within braces
Menu Item or node hdr
Include file
code/var reference

Org Mode

Org/Roam ID

Outline Major/Minor Modes

Man Apropos

Man Pages

I/Buffer Menu

Todotxt Mode

Emacs Info Reader

Menu Entry or Cross Ref
Up, Next or Prev Header
File entry of Header
End of current node
Anywhere else

Subsystems

Calendar

GNU Debbugs Tracker
Treemacs

Dired Sidebar
Dired Mode

Magit Modes

GNUS News Reader

Mail Reader and Summaries
00-Browser
Tar Mode

Texinfo referent
Info referent

Texinfo referent
Texinfo referent
doc for referent

Jumps to
Jumps to
Jumps to
Jumps to
Displays

Button help
Button help
Button help
Button help
Button help

Follows links, cycles headings and Org Meta Return

Jumps to ID referent

Button help

Collapses, expands, and moves outline entries

Displays man page entry

<- same

Follows cross refs, file refs and C code refs
Saves, deletes and displays buffers

Toggles item completion

referent
referent
Jumps to top node
Jumps to next node
Scrolls up a windowful

Jumps to
Jumps to

Scrolls or shows appts
Displays issue discussion
Displays item

Displays item

Edit and archive items

<- same

Jumps to prior node
Jumps to (DIR) node
Jumps to previous node
Scrolls down a windowful

Scrolls/marks date
Displays issue status
Displays item
Displays item

Views and deletes files from dir listing
Collapses, expands and jumps to things
Toggles group subscriptions, gets new news,

and browses articles

Browses, deletes and expunges messages
Browses object classes and elements
Views and edits files from tar archive files

Invalid context error

Invalid context error

14

Any other context (defaults)

See Appendix E [Smart Key Reference], page 131, for extensive reference documentation
on the Smart Keys.

Note how the last line in the table explains that the default behavior of the Smart Keys
in an unknown context is to report an error. You can change these behaviors by setting two
variables. See the documentation for the variables action-key-default-function and
assist-key-default-function for information on how to customize the behavior of the
Smart Keys within default contexts.

When you use a mouse and you want to find out what either of the Smart Keys does
within a context, depress the one you want to check on and hold it down, then press the
other and release as you please. A help buffer will pop up explaining the action that will be
performed in that context and attributes of the button, if any. A press of either Smart Key
at the end of that help buffer will restore your display to its configuration prior to invoking
help.

On the keyboard, {C-h A} displays this same context-sensitive help for the Action Key
while {C-u C-h A} displays the help for the Assist Key. Note that {C-h a} performs a
function unrelated to Hyperbole, so you must press the shift key when you type the A
character.

Chapter 3: Smart Keys 15

3.3 Smart Key Argument Selection

A prime design criterion of Hyperbole’s user interface is that you should be able to see what
an operation will do before using it. The Assist Key typically shows you what a button or
minibuffer menu item will do before you activate it. Hyperbole also displays the result of
directly selecting an argument value with the Action Key, to provide feedback as to whether
the correct item has been selected. A second press/click is necessary before an argument is
accepted and processed.

Many Hyperbole commands prompt you for arguments. The standard Hyperbole user
interface has an extensive core of argument types that it recognizes. Whenever Hyperbole
is prompting you for an argument, it knows the type that it needs and provides some error
checking to help you get it right. More importantly, it allows you to press the Action Key
within an entity that you want to use as an argument. Hyperbole will copy the appropriate
thing to the minibuffer as the argument. If you press (click with a mouse) the Action
Key on the same thing again, e.g. within a list of possible completions, Hyperbole exits
the minibuffer and uses the current argument. Thus, a double click registers a desired
argument. Double-quoted strings, pathnames, mail messages, Info nodes, dired listings,
buffers, numbers, completion items and so forth are all recognized at appropriate times. All
of the argument types mentioned in the documentation for the Emacs Lisp interactive
function are recognized. Experiment a little and you will quickly get used to this direct
selection technique.

Wherever possible, standard Emacs completion is offered, as described in Section “Com-
pletion” in the GNU Emacs Manual. Remember to use {7} to see what your possibilities
for an argument are if completions are not automatically shown to you. Once you have a
list of possible completions on screen, press the Action Key twice on any item to enter it as
the argument. If you are using the Vertico completion library with completions displayed
in the minibuffer, selection of completions works the same as if they were displayed in a
separate buffer as in standard Emacs.

Within the minibuffer itself, the Smart Keys are also context-sensitive. A press of
the Action Key at the end of the argument line tries to accept the argument and when
successful, exits the minibuffer. A press of the Assist Key at the end of the argument line
displays matching completions for times when they are not automatically displayed or need
updating. A press of the Action or Assist Key on part of the argument, deletes from point
to the end of the line, expanding the set of available completions and redisplaying them.

3.4 Smart Key Debugging

Typically, {C-h A} and {C-u C-h A} which show Action and Assist Key help for the current
context, are sufficient for seeing how the Smart Keys behave no matter where they are used.

However, if a Smart Key ever behaves differently than you think it should or if you want
to test how the Smart Keys respond in a new context, then the Smart Key debugging flag
may be of use. You toggle it on and off with {C-h h ¢ d} (minibuffer menu Cust/Debug-
Toggle). Once enabled, this displays a message in the minibuffer each time the Action or
Assist Key is released, showing the context of the press and its associated action, so you
can see exactly what is happening whenever you use a Smart Key. These messages are all
prefaced with “(HyDebug)” and logged to the “*Messages*” buffer for later viewing.

Chapter 3: Smart Keys 16

If you do find a problem with the Smart Keys and want to report a bug, use {C-h hm
r} to compose an email message to the bug-hyperbole list. Hyperbole will automatically
include all of the “(HyDebug)” messages from your current emacs session into your email.
Similarly, when you compose an email to the hyperbole-users mailing list with {C-h h m c},
these messages are also included.

3.5 Smart Key Thing Selection

Hyperbole has some radically cool ways to select regions of structured text or source code
and to copy or move them between buffers with a single mouse drag or two key presses.
A great deal of smarts are built-in so that it does the right thing most of the time; many
other attempts at similar behavior such as thingatpt.el fail to deal with many file format
complexities.

We use the term things to refer to structured entities that Hyperbole can select. These
include: delimited pairs of (), {}, <>, [] and quote marks, source code functions, source code
comments and matching tag pairs in HTML and SGML modes. Delimited things are those
things that contain a selectable delimiter such as an opening parenthesis.

The best way to mark a delimited thing is to move your cursor to the starting delimiter
of the thing and then press the Action Key. Typically, you will see the thing highlight. You
can then operate upon it as you would any Emacs region. In many cases, you can do the
same thing upon the closing delimiter, but this is not as reliable. An Action Key press on
the start of an HTML, XML, or SGML tag pair marks the entire region span of the pair.
If you use the Assist Key instead, it will mark and kill (delete) the thing.

Even better are Smart Mouse Key thing drags which let you copy or move delimited
things in one operation without having to select a region. To copy, simply drag with the
Action Key from a thing’s opening delimiter and release somewhere outside of the thing,
either within the same window or within another window. The thing will be copied to the
point of release. If you want to move a thing, simply perform the same drag but with the
Assist Mouse Key. Ensure that you do not move any explicit buttons from one buffer to
another as that does not work.

Hyperbole also binds two convenience keys for working with things.

The first such key is {C-c RET} hui-select-thing which selects bigger and bigger syn-
tactic regions with each successive use. Double or triple clicks of the Selection Key (left
mouse key) do the same thing. The first press selects a region based upon the character at
point. For example, with point over an opening or closing grouping character, such as { or },
the whole grouping is selected, e.g. a C function. When on an _ or - within a programming
language identifier name, the whole name is selected. The type of selection is displayed
in the minibuffer as feedback. When using a language in which indentation determines
nesting level like Python, a double click on the first alpha character of a line, such as an if
statement, selects the current clause (until the next line at the same or lesser indentation).
Use {C-g} to unmark the region when done. Use, hui-select-thing-with-mouse if you
want to bind this to a different mouse key to use single clicks instead of double clicks.

This key defers to any currently active major-mode which also binds it.

The second convenience key is bound in HTML/XML/SGML/web modes. {C-c .}
hui-select-goto-matching-tag jumps between the opening and closing tag of a pair. It
moves point to the start of the tag paired with the closest tag that point is within or which

Chapter 3: Smart Keys 17

it precedes. A second press moves point to the matching tag of the pair, allowing you to
quickly jump back and forth between opening and closing tags.

This key defers to any currently active major-mode which also binds it.

3.6 Smart Mouse Key Modeline Clicks

Smart Mouse Key clicks on a window’s modeline offer many powerful browsing features,
including directory editing (dired), user manual browsing, and window, buffer and frame
selection. Generally, only Hyperbole-specific modeline actions are discussed herein.

o Leftmost Character

Action Key clicks on the first (usually blank) character of the modeline bury the current
buffer in the buffer list and display the next buffer in the list. Assist Key clicks do the
reverse and unbury the bottom buffer.

A similar effect can be achieved with the standard Emacs mouse 1 (left) and 3 (right)
buttons on the Buffer ID element of modeline to cycle through previous and next
buffers, respectively. This may be easier to use since you can click anywhere on the
buffer identifier.

e Buffer ID Element

On the left part of the modeline is the buffer identification, generally the name of the
buffer in use. An Action Key click on that switches the window to edit the buffer’s
directory using dired. Then Action Key clicks on directory items in the dired buffer
display the items selected in other windows. An Action Key drag from an item to
another window displays the item in that window.

An Action Key click on the first line in a dired buffer which contains the current
directory path, specifically on any ancestor part of the path (the part to the left of the
click point), starts another dired session on the ancestor directory. Click at the end of
this line or on the last line to end the dired session (bury its buffer).

If you use the Treemacs file viewer Emacs package, you can configure Hyperbole to use
this instead of Dired when you click on a modeline buffer id.

Since this is a customization option, it may be changed permanently like so. Use {M-x
customize-set-variable RET action-key-modeline-buffer-id-function RET}.
Change the value to smart-treemacs-modeline. Then press RET. To change it back
to Hyperbole’s default, use the value, dired-jump.

e Large Blank Area

An Action Mouse Key click in a blank area of a window modeline (away from left and
right edges) toggles between displaying and hiding a list of all buffers. Once displayed,
an Action Key click on a buffer item will display it in another window. You can drag
items to specific windows for display as well.

Alternatively, you may (1) display the buffer menu, (2) use its {m} command to mark
buffers, and (3) use the Hyperbole {@} command to display the marked buffers in a
grid of popup windows whose number of rows and columns you specify at the prompt
or via a prefix argument. This also works in ibuffer-menu and dired modes. See
Chapter 8 [HyControl], page 57.

An Assist Key click in the blank area of the modeline displays a quick access menu
of display-oriented commands. You can jump to buffers categorized by major mode,

Chapter 3: Smart Keys 18

jump to windows by buffer name, or to frames by name. Manage your windows and
frames quickly with this menu as well. As always with Hyperbole, just try it and you’ll
begin to wonder how you lived without it before.

e Right Corner

A click of the Action Mouse Key in the right corner of a window modeline (within the
rightmost 3 characters) displays or hides the GNU Info Manual Browser, giving you
quick point and click access to an amazing wealth of documentation, since the Action
Key also browses through these manuals and follows their hyperlinked cross-references.
A click of the Assist Key in the same location displays or hides the Smart Key summary,
as noted earlier.

e (Customizable Variables

Hyperbole modeline mouse click actions are controlled by the two functions,
action-key-modeline and assist-key-modeline. If you know a little Emacs Lisp
you can change these to do whatever you like. When a Smart Key press is on a
blank part of a modeline but not at the left or right, the function given by one of
these two variables is executed: action-key-modeline-function or assist-key-
modeline-function. By default, the Action Key toggles between displaying and
hiding the buffer menu. If you like the more advanced features of Ibuffer Mode, you
can change the buffer menu to use that with the following in your Emacs initialization
file: (setq action-key-modeline-function #'hmouse-context-ibuffer-menu).
To set it back to the default use: (setq action-key-modeline-function
#'hmouse-context-menu).

The default assist-key-modeline-function is to pop up a menu of convenient screen
commands that lets you select buffers grouped by major mode, use HyControl, or jump
to specific windows, window configurations or frames.

Since these are customization options, they may be change permanently like so. Use
{M-x customize-set-variable RET assist-key-modeline-function RET}. Change
the value to your desired command. Then press RET.

3.7 Smart Mouse Key Drags

As mentioned in the section on Thing Selection, Hyperbole Smart Mouse Key drag actions
can be quite useful. This section summarizes other drag contexts and actions; for complete
documentation, see Section E.1 [Smart Mouse Keys], page 131.

3.7.1 Creating and Deleting Windows

Horizontal and vertical drags of the Smart Mouse Keys are used to split and delete Emacs
windows.

An Action Mouse Key horizontal drag of five or more characters in either direction within
a single window creates a new window by splitting the current window into two windows,
one atop the other. An Action Mouse Key vertical drag in either direction splits the current
window into two side-by-side windows. A horizontal or vertical drag of the Assist Mouse
Key within a single window, deletes that window.

If you split windows many times and then delete a number of the windows, you’ll be
left with windows of differing heights. Use {C-x +} to re-balance the sizes of the remaining
windows, so they are fairly even.

Chapter 3: Smart Keys 19

3.7.2 Saving and Restoring Window Configurations

A window configuration consists of the set of windows within a single Emacs frame. This
includes their locations, buffers, and the scrolled positions of their buffers.

Hyperbole allows you to save and restore window configurations with simple diagonal
mouse drags within a single window. A diagonal drag in any direction of the Action Key
saves the current window configuration to a ring of window configurations, just like the
Emacs text kill ring. See Section “Kill Ring” in the Emacs Manual. Each diagonal drag in
any direction of the Assist Key restores a prior saved window configuration from the ring.
Window configurations are restored in reverse order of the way they were saved. Since a ring
is circular, after the oldest element is restored, the newest element will again be restored
and so on.

3.7.3 Resizing Windows

Emacs windows may be resized by dragging their window separators (modelines or vertical
side lines) within a frame. Simply depress either Smart Mouse Key on a non-bottommost
modeline or near a window side, hold it down while you drag to a new location and then
release. The window separator will move to the location of release. Basically, just drag the
window separator to where you want it. Drags from a blank area of a modeline show visible
feedback as the window is resized.

3.7.4 Moving Frames

Drags of either Smart Key from a bottommost modeline can be configured to drag Emacs
frames to new locations on screen. To configure all existing and future frames for such
dragging, use:

(modify-all-frames-parameters '((drag-with-mode-line . t))).
To configure just the selected frame for such dragging, use:
(set-frame-parameter nil 'drag-with-mode-line t).
on each frame you would like to drag.

Then drag with either Smart Key from a bottommost modeline within a frame to move
the frame on screen with live feedback, as if you were dragging from the titlebar. If you use
a click-to-focus window manager, click on the desired frame first and then depress to drag.

3.7.5 Dragging Buffers, Windows and Items

Smart Mouse Key drags let you display buffers and windows however you want them. Dired,
Treemacs and buffer-menu items as well as Hyperbole button referents may be displayed in
specific locations with drags. Below we explore these drag actions.

3.7.5.1 Swapping Buffers

Swapping buffer locations is quick and easy with Hyperbole. Simply drag the Assist Mouse
Key (not the Action Key) from the open area of one window’s modeline to the text area of
another. This works across frames as well.

If you have precisely two windows in an Emacs frame, you can swap their buffers from
the keyboard. Use this Hyperbole minibuffer menu key sequence involving the tilde key to
swap the buffers and quit from the Hyperbole minibuffer menu: {C-h h s w ~ Q}. Similarly,

Chapter 3: Smart Keys 20

if you have two single window frames, you can swap buffers between them with {C-h h s f

~ Q.
3.7.5.2 Displaying Buffers

What if you want to display the same buffer in another window and not swap buffers?
Depress the Action Mouse Key in the open area of the modeline of the source window
and drag to the text area of the destination window. Voila, the buffer appears in the new
location as well as the old one.

If you want a new window where you release (so the original destination window’s buffer
stays onscreen), just drag to the release window’s modeline; that window will be split before
the buffer is displayed.

3.7.5.3 Cloning Windows

To clone a window with its buffer to a new frame, simply drag the Action Mouse Key from
the window to outside of Emacs and release the key. A new frame will be created, selected
and sized according to the original window. Do the same thing with the Assist Mouse Key
and the original window will be deleted as well, unless it is the only window in that frame.

3.7.5.4 Displaying Items

You can also drag items to other windows with the Action or Assist Mouse Keys in Dired,
Buffer Menu, Ibuffer and Treemacs listing buffers, rather than the buffers themselves. Drag-
ging Hyperbole buttons to display their referents in another window works too.

Drag with the Action or Assist Mouse Key and the selected item’s referent will be
displayed in any Emacs window in which you release. Drag outside Emacs and it will be
displayed in a new frame. To display the last item you want within the listing window
itself, press and release the Action Key on that item after dragging your other items to
their respective windows. Remember that you can emulate these drags from the keyboard
when needed, see Section 3.7.5.5 [Keyboard Drags], page 20.

So now you can put a bunch of buffers and files on your screen wherever you like.
Typically, a brief visual pulse is shown first at the source item and then in the destination
window, to help you see that the transfer has been made. An Assist Key drag will move the
the item list buffer to the destination (swapping buffers), just as it does with other buffers.

3.7.5.5 Keyboard Drags

If you run Emacs under a window system and there is no prior key binding on {M-o} when
you load Hyperbole, then many Smart Key drags can be emulated from the keyboard. To
do so, press {M-o}, the hkey-operate command, at the button source location, move to the
link destination, e.g. with {C-x o}, and then press {M-o} again. This simulates a depress
and release of the Action Key. {C-u M-o} emulates drags of the Assist Key. This will not
work when Hyperbole is run from a dumb terminal Emacs session since drag actions are
not supported without a window system.

For even faster keyboard-based display of items and drag emulations, use the Emacs
package ace-window (see https://elpa.gnu.org/packages/ace-window.html).

The ace-window package assigns short letter IDs to each Emacs window and lets you
jump to or operate upon a specific window by giving its ID. Hyperbole can add commands

https://elpa.gnu.org/packages/ace-window.html

Chapter 3: Smart Keys 21

to ace-window that replace the two-step drag emulation key described above with a single
key sequence that does not require moving to the drag target window since it is specified
by ID as part of the command.

To enable this feature, in your Emacs initialization file after Hyperbole is initialized, if
you do not have a key bound for ace-window, then call: (hkey-ace-window-setup \"\M-
o\") to bind it to {M-o}, replacing Hyperbole’s default hkey-operate command there
(because ace-window can emulate the drags performed by hkey-operate). If you already
have a key bound for ace-window, then just ensure it is initialized by calling (hkey-ace-
window-setup) without a key argument.

After setup, the leftmost character or two of each window’s modeline will show the ID
to type to use that window as the drag destination. Then whenever point is on an item
you want displayed in another window, use {M-o i <id-of-window-to-display-item-in>}
and watch the magic happen. If you want to display multiple items in different windows,
instead use the {M-o t <id-of-window-to-display-item-in>} key sequence to throw the
item to the window. To replace the selected window’s buffer with that of another window,
use {M-o r <id-of-window-displaying-desired-buffer>}. To instead swap the selected
window’s buffer with that of another window, use {M-o m <id-of-window-to-swap-with>}.

And finally, to create a new, unnamed implicit link in the selected window that refers
to the location in the other window, use {M-o w <referent-window-id>}. This executes
hui:ibut-link-directly which determines the link type by using the referent context.
To create a named implicit link button in the selected window, use {M-1 M-o w <window>}.
It prompts for the name and then links to the referent window location. If you highlight a
region before invoking this, Hyperbole will use that as the name for the implicit button.

To create an explicit button the same way, use {C-u M-o w <window-id>}. This executes
hui:ebut-link-directly, prompts for any needed arguments, determines the link type by
using the referent context and then creates the explicit button. If you highlight a region
before invoking this, Hyperbole will use that as the name for the explicit button.

You can also throw the active (highlighted) region of text to another window. Simply
activate a region and then use {M-o t <window-id>}. If you don’t use region highlighting,
i.e. transient-mark-mode, then use {C-u M-o t <window-id>} for the same effect. The
buffer in the target window must differ from the one in the source window. With no region
active, this command throws the source buffer to the target window.

In summary:
M-o0 i <window>

insert listing item at point into <window>; if not on a listing item, trigger an
error

M-o0 m <window>
swap the buffers in the selected window and <window>

M-o r <window>
replace the selected (current) window’s buffer with that of <window>

M-o t <window>
throw region, listing item at point, or current buffer to <window>

Chapter 3: Smart Keys 22

M-o w <window>
window link, create a new unnamed implicit button in the selected (current)
window, linking to point in the referent <window>.

M-1 M-o w <window>
window link, create a new named implicit button in the selected (current) win-
dow, linking to point in the referent <window>. Use region, if any, as the button
name.

C-u M-o0 w <window>
window link, create a new explicit button in the selected (current) window,
linking to point in the referent <window>. Use region, if any, as the button
name.

23

4 Buttons

This chapter explains use of Hyperbole buttons. There are several kinds of Hyperbole
buttons: buttons that are created one at a time and stored in files (explicit buttons);
buttons that can be activated by name anytime (global buttons); and buttons defined by
textual patterns where one definition can create an infinite number of buttons (implicit
buttons).

Hyperbole buttons are embedded within textual documents; they may be created, mod-
ified, moved or deleted. Each button performs a specific action, such as linking to a file or
executing a shell command.

There are three categories of Hyperbole buttons:

explicit buttons
created by Hyperbole, accessible from within a single document;

global buttons
created by Hyperbole, specific to each user, and accessible anywhere within a
user’s network of documents;

implicit buttons
created and managed by other programs or embedded within the structure of
a document, accessible from within a single document. Hyperbole recognizes
implicit buttons by contextual patterns given in their type specifications (ex-
plained later).

Explicit Hyperbole buttons may be embedded within any type of text file. Implicit
buttons may appear only within document contexts allowed by their types, which may limit
the kinds of documents or the locations within those documents at which such buttons may
be found. All global buttons for a user are stored in a single location and are activated by
typing their names, rather than by direct selection, the means used to activate explicit and
implicit buttons.

To summarize:

Button Category Active Within Activation Means Managed By
Explicit a single document direct selection Hyperbole
Global any document typing its name Hyperbole
Implicit a matching context direct selection other tools

A click on a Hyperbole button may activate it or describe its actions, depending on
which mouse key is used. Buttons may also be activated from a keyboard. (In fact, many
Hyperbole operations, including menu usage, may be performed from any standard charac-
ter terminal interface, so you need not be anchored to a desktop all day). See Chapter 3
[Smart Keys]|, page 11. There is also a key that shows you how a button will behave before
you activate it, see Section 3.2 [Smart Key Operations|, page 11.

Chapter 4: Buttons 24

4.1 Explicit Buttons

Hyperbole creates and manages explicit buttons which perform specific actions when acti-
vated (typically through a button press). They look like this ‘<(fake button)>’. They are
quickly recognizable, yet relatively non-distracting as you scan the text in which they are
embedded. The text between the ‘<’ and ‘)>’ delimiters is called the button label or but-
ton name. Spacing between words within a button label is irrelevant to Hyperbole. Button
labels may wrap across several lines without causing a problem; just be sure to select the
first line of the button to activate it.

Explicit buttons may be added to any editable buffer including temporary buffers without
any attached files (such buttons will last only the length of a single Emacs session). For
source code files, simply place Hyperbole explicit buttons within comments. Buttons that
you use for quick navigation to websites or other things you do often should be added to
your personal button file. See Section 4.4 [Button Files|, page 35.

Explicit buttons may be freely moved about within the buffer in which they are created.
(No present support exists for moving buttons between buffers). A single button may
also appear multiple times within the same buffer; simply copy the button label with its
delimiters to a new location if you need another copy of it.

For details on how to create, activate, delete or edit explicit buttons, see Section 4.7
[Utilizing Explicit Buttons], page 42.

Each explicit button is assigned an action type that determines the actions it performs.
Hyperbole includes its own set of useful action types but any named, interactive Emacs
Lisp command may be used. For example, Link action types connect buttons to particular
types of referents, the targets of their links. Link action type names all begin with 1ink-.
Link action button referents are displayed when such buttons are activated with a press
or a click. See Section 4.5 [Action Types|, page 36, for a list of Hyperbole action types,
including link types.

Hyperbole does not manage referent data; this is left to the applications that generate the
data. This means that Hyperbole provides in-place linking and does not require reformatting
data to integrate it with Hyperbole.

Hyperbole stores the button data that gives an explicit button its behavior, separately
from the button label, in a file named .hypb (_hypb under MS Windows) within the same
directory as the file in which the button is created. Thus, all files in the same directory
share a common button data file. Button data is comprised of individual button attribute
values. A user never sees this data in its raw form but may see a formatted version by
asking for help on a button.

4.2 Global Buttons

Sometimes it is useful to activate buttons without regard to the information with which
you are working. In such instances, you use global buttons, which are buttons that may be
activated or otherwise operated upon by typing their names/labels when they are prompted
for, rather than selecting the buttons within a buffer. In contrast, activation of explicit
buttons depends upon the information on your screen since they are accessible only from
within their particular buffers.

Chapter 4: Buttons 25

If you want a permanent link to a file section that you can follow at any time, you can
use a global button. Or what about an Emacs keyboard macro that you use frequently?
Create a global button with an action type of exec-kbd-macro button and an easy to type
name. Then you can activate it whenever the need arises.

Global buttons are managed with the Hyperbole Gbut/ menu accessed with {C-h h g}.
The Create item, {C-h h g ¢}, prompts for a global button name, an action type, and the
action’s associated arguments, such as a file to which to link. It then creates the button. To
activate the button, use the Act menu item, {C-h h g a}. Type the button’s name, press
{RET}, and then Hyperbole prompts you for its action type and associated arguments. {C-h
h g e} to edit an existing global button. To remove a button, use the Delete menu item,
{C-h h g d}; see Section 4.7.3 [Deletion], page 45.

To create a global button that links to point in one of your Emacs windows, use the
Link menu item, {C-h h g 13}.

By default this will create a global explicit link button. Give it a prefix argument to
create a global implicit link button.

With a single window visible on-screen or a single window within your current frame, this
will prompt you for a button name or label (temporarily showing you your global/personal
button file) and then will insert a button that links to the current point within that window.

If you have exactly two Emacs windows in your current frame or exactly two windows
visible across two Emacs frames, then the link referent will be to the point in the other,
non-selected window.

With more than two windows on screen, Hyperbole will prompt you to choose the referent
window and its associated point to which to link. If the Ace Window package is installed
and active, this will be used to choose the window via keyboard; otherwise, you will be
prompted to select it by mouse.

Global buttons are actually explicit buttons stored at the end of your personal button
file, see Section 4.4 [Button Files], page 35. You can always go into that file and activate,
edit or annotate these buttons with comments.

Emacs has a built-in feature similar to Global Buttons called Bookmarks. Bookmarks
store places in files or link to URLs, so they are more limited than Hyperbole’s global
buttons and cannot utilize all of Hyperbole’s capabilities for performing actions. Hyperbole
has an action type, link-to-bookmark, for using an Emacs bookmark as a Hyperbole
button referent. See Section “Bookmarks” in the Emacs Manual, for details on bookmarks.

4.3 Implicit Buttons

Hyperbole can recognize and activate implicit buttons within documents that require no
special markup, e.g. pathnames or URLs, and many other types. For example, an Action
Key press on a web URL will display its link in a browser, regardless of the format of the
document. Similarly, an Action Key press on an email address starts composing mail to
that address.

Implicit buttons are identified by implicit button type contextual pattern matchers that
identify appropriate textual patterns at point. An implicit button type utilizes Emacs
Lisp to identify a pattern or state that when matched triggers an action associated with
the implicit button type. The action is specified by either a Hyperbole action type (see

Chapter 4: Buttons 26

Section 4.5 [Action Types|, page 36) or an Emacs Lisp command. Implicit button types
may use the same action types that explicit buttons use. As an example, the pathname
implicit button type matches to any existing local filename or directory name and its action
type, link-to-file, displays the associated file or directory, typically in another window.
An explicit button could do the same thing but has to be created manually, rather than
recognized as part of the buffer text.

Implicit buttons are managed with the Hyperbole Ibut/ menu accessed with {C-h h i}.
The Create item, {C-h h i c}, prompts for an implicit button name (default is any selected
region), an action type, and the action’s associated arguments. It then creates the button
at point. Use this to create a button with any implicit button type, not just links.

Alternatively, to create an implicit link button to something displayed within an Emacs
window (the referent), simply drag with the Action Mouse Key depressed from an editable
source window to another window with the desired link referent and then release. The
drag must start outside of a draggable item, see Section 3.7.5.4 [Displaying Items], page 20.
Hyperbole will either automatically select the button type based on the referent context or
will prompt you to select from one of a few possible link types.

If you have exactly two Emacs windows in your current frame or exactly two windows
visible across two Emacs frames, this is even easier. Simply use the Link menu item, {C-h
h i 1}, to create a new unnamed implicit link button or to edit the one at point. {C-u
C-h h i 1} will additionally prompt to add a name or rename the button at point. With
more than two windows, Hyperbole will prompt you to choose the referent window and its
associated point to which to link. If the Ace Window package is installed and active, this
will be used to choose the window via keyboard; otherwise, you will be prompted to select
it by mouse.

To activate an implicit button with point on its name or button text, use the Act menu
item, {C-h h i a} or press the Action Key. You can use {C-h h i e} to edit an implicit
button (or simply edit it manually). If you want to add a name to an existing implicit button
without one, use {C-h h i n} to name it. Rename an existing named implicit button with
{C-hhir}

Unlike explicit buttons, implicit buttons have no individual button data other than their
text and optional labels. You use implicit button types which include boolean expressions
(predicates) that match to both the label and the context required of any button of the
type. Each time a Smart Key is pressed at a location, Hyperbole evaluates the predicates
from the list of implicit button types and the first one that evaluates true is selected and
its associated action is triggered.

All of this happens transparently and is easy to use once you try it. The Hyperbole
Smart Keys offer additional extensive context-sensitive point-and-click type behavior be-
yond implicit button types. See Section 3.2 [Smart Key Operations], page 11.

Individual implicit buttons may be labeled /named, allowing activation by name or use
as a link target by other buttons. Such names are highlighted similarly to explicit button
names. Here is a pathname button with a label of "My Emacs Files’:

<[My Emacs Files]>: ""/.emacs.d"

The name is delimited by ‘<[’ and ‘1>’ and can be followed by any number of :, - or =
separator characters, including none.

Chapter 4: Buttons 27

4.3.1 Implicit Button Types

Below is a list of standard implicit button types in the order in which Hyperbole tries to
match to the types when looking for an implicit button (decreasing priority order). {C-h h i
t RET} provides similar information. See the Hyperbole file, . ./hibtypes.el, for examples
of how to define implicit button types (in the file, they are listed in reverse order, increasing
in priority).
smart-org
smart-org is not an actual implicit button type, just an Elisp function, but it
behaves similarly, so it is documented here.
Hyperbole recognizes Org mode constructs in any of these modes: org-mode,
org-agenda-mode, outshine-mode or poporg-mode. (See the function
hsys-org-mode-p).
Hyperbole does quite a few things for Org mode users. When the Action Key
is pressed and hsys-org-enable-smart-keys is ‘t”:

1. On an Org tag, call hsys-org-agenda-tags-p and an appropriate view
tags function based on current directory or buffer name, matching to the
tag. If on a colon between tags, match to all tags on the line.

2. On an Org todo keyword, cycle through the keywords in that set or if final
done keyword, remove it.

3. On an Org agenda view item, jump to the item for editing.
When the Action Key is pressed and hsys-org-enable-smart-keys is
either ‘t’ or ‘:buttons’

4. Within a radio or internal target or a link to it, jump between the target

and the first link to it, allowing two-way navigation.

On another internal link in an Org mode file, jump to its referent.

On an Org mode external link, jump to its referent.

On a Hyperbole button, activate the button.

o N oo

With point on the :dir path of a code block definition, display the directory
given by the path.

9. With point on any #+BEGIN_SRC, #+END_SRC, #+RESULTS, #+be-
gin_example or #+end_example header, execute the code block via the Org
mode standard binding of {C-c C-c}, org-ctrl-c-ctrl-c.

10. With point on an Org mode heading, cycle the view of the subtree at point.

11. In any other context besides the end of a line, invoke the Org mode standard
binding of {M-RET}, org-meta-return.

When the Assist Key is pressed, it behaves just like the Action Key except in
these contexts:

1. On an Org tag, call hsys-consult-org-grep-tags-p and an appropriate
consult grep function based on current directory or buffer name, prompting
with and matching to the tag. If on a colon between tags, prompt and
match to all tags on the line.

2. On an Org todo keyword, move to the first todo keyword in the next set,
if any.

Chapter 4: Buttons 28

3. On an Org mode link or agenda view item, display Hyperbole context-
sensitive help.

4. On a Hyperbole button, performs the Assist Key function, generally show-
ing help for the button.

5. With point on the :dir value of a code block definition, display a help
summary of this implicit directory button.

6. With point on any #+BEGIN_SRC, #+END_SRC, #+RESULTS, #+be-
gin_example or #+end_example header, remove any associated results.

7. Not on a Hyperbole button but on an Org mode heading, cycle through
views of the whole buffer outline.

To disable Hyperbole support within Org major and minor modes, set the
custom option hsys-org-enable-smart-keys to nil. Then in Org modes,
the Action Key will simply invoke org-meta-return. {C-h h ¢ o} (minibuffer
menu Cust/Org-M-RET) will interactively customize this setting.

The following table summarizes the effect of this option setting.

| This Setting | Smart Key Context

—4— —_ —t—————

Hyperbole Button | Org Link | Fallback Command

| :buttons | Ignore

| nil

doc-id

smerge

completion

+ _+ ______
Activate | Activate
Ignore | Ignore

Activate | Activate
______________ e

org-meta-return
org-meta-return
None

| Ignore
| Activate
_________ oo e —_——e

+ —— — + — +

+ ——— + — +

Display a document from a local document library given its id. Ids must be
delimited by doc-id-start and doc-id-end and must match the function given
by doc-id-p. (Note that this implicit button type is not installed by default.
You must manually configure it and load it from the file, ${hyperb:dir}/hib-
doc-id.el). See the commentary at the top of that file for more information.

Within a merge conflict buffer, with smerge-mode active, make the conflict
marker lines into buttons that select what version to keep. The upper, center
and lower conflict marker lines keep the upper conflict, both conflicts or the
lower conflict, respectively.

See Section E.2.13 [Smart Key - Magit Mode], page 142, for similar buttons for
conflict resolution from within the magit-status-mode.

Insert the completion at point (from a completions buffer) into the minibuffer
or the other window.

hywiki-existing-word

action

hyp-source

When on a HyWiki word with an existing page, display its page and optional
section.

The Action Button type. At point, activate any of: an Elisp variable, a Hyper-
bole action-type, or an Elisp function call surrounded by <> rather than (). If
an Elisp variable, display a message showing its value.

Turn source location entries following an ‘@loc>’ line in Hyperbole reports
into buttons that jump to the associated location. For example, {C-u C-h

Chapter 4: Buttons 29

hddC-hheh o} summarizes the properties of the explicit buttons in the
${hyperb:dir}/DEMO file and each button in that report buffer behaves the
same as the corresponding button in the original ${hyperb:dir}/DEMO file.

hyp-address
Within a mail or Usenet news composer window, make a Hyperbole
support/discussion e-mail address insert Hyperbole environment and version
information. This is useful when sending mail to a Hyperbole discussion mail
list. See also the documentation for actypes::hyp-config. For example,
a click of an Action Mouse Key on <hyperbole-users@gnu.org> in a mail
composer window would activate this implicit button type.

Info-node
Make a "(filename)nodename" button display the associated Info node. Also
make a "(filename)itemname" button display the associated Info index item.
Examples are "(hyperbole)Implicit Buttons" and “(hyperbole)C-c /.

gnus-push-button
Activate GNUS-specific article push-buttons, e.g. for hiding signatures. GNUS
is a news and mail reader.

texinfo-ref
Display Texinfo, Info node or help associated with Texinfo node, menu item,
@xref, Qpxref, Qref, Qcode, @findex, @Qvar or @vindex at point. If point is
within the braces of a cross-reference, the associated Info node is shown. If
point is to the left of the braces but after the @ symbol and the reference is to
a node within the current Texinfo file, then the Texinfo node is shown.

For @Qcode, @Qfindex, @Qvar and @Qvindex references, the associated documenta-
tion string is displayed.

patch-msg
Jump to the source code associated with output from the ‘patch’ program.
Patch applies diffs to source code.

elisp-compiler-msg
Jump to source code for definition associated with an Emacs Lisp byte-compiler
error message or ERT test output line. Works when activated anywhere within
such a line.

debugger-source
Jump to the source line associated with a debugger stack frame or breakpoint
line. This works with gdb, dbx, and xdb. Such lines are recognized in any
buffer. For example, in Python, this will test for and jump to a source line
referenced in Python pdb, traceback, or pytype error.

grep-msg Jump to the line associated with a grep or compilation error message. Messages
are recognized in any buffer.

hyrolo-stuck-msg
Jump to the position where a HyRolo search has become stuck from the error.
Such errors are recognized in any buffer.

Chapter 4: Buttons 30

ripgrep-msg
Jump to a line associated with a ripgrep (rg) line numbered msg. Ripgrep
outputs each pathname once, followed by all matching lines in that pathname.
Messages are recognized in any buffer (other than a helm completion buffer).

ipython-stack-frame
Jump to the line associated with an ipython stack frame line numbered msg.
ipython outputs each pathname once followed by all matching lines in that
pathname. Messages are recognized in any buffer (other than a helm completion
buffer).

pathname-line-and-column
Make a valid pathname:line-num[:column-num] pattern display the path
at line-num and optional column-num. Also works for remote pathnames.
May also contain hash-style link references with the following format:
<path>[#<link-anchor>] :<line-num>[:<column-num>]. Line and column
can also include a leading and optional character, L for line and C for column.

link-to-ibut <ilink>
At point, activate a link to an implicit button within the current buffer. This

executes the linked to implicit button’s action in the context of the current
buffer.

Recognizes the format ’<ilink:’ button_label [":> button_file_path] ’>’, where
button_file_path is given only when the link is to another file, e.g. <ilink: my
series of keys: ${hyperb:dir}/HYPB>.

link-to-gbut <glink>
At point, activate a link to a global button. This executes the linked to global
button’s action in the context of the current buffer.

Recognizes the format '<glink:” button_label >’ e.g. <glink: open todos>.

link-to-ebut <elink>
At point, activate a link to an explicit button within the current buffer. This

executes the linked to explicit button’s action in the context of the current
buffer.

Recognizes the format ’<elink:’ button_label [':> button_file_path] ’>’, where
: button_file_path is given only when the link is to another file, e.g. <elink:
project-list: ~/projs>."

klink Follow a link delimited by <> to a koutline cell. See the documentation for
actypes: :link-to-kotl for valid link specifiers.

man-apropos
Make man apropos entries (from ‘man -k’) display associated man pages when
selected.

rfc Retrieve and display an Internet Request for Comments (RFC) standards doc-
ument referenced at point. The following formats are recognized: RFC822,
rfc-822, and RFC 822. The hpath:rfc variable specifies the location from
which to retrieve RFCs via HTTP.

Chapter 4: Buttons 31

kbd-key

Execute a key series (series of key sequences) around point, delimited by curly
braces, {}. Key series should be in human readable form, e.g. {C-x C-b}. For-
mats such as {"x"b} will not be recognized. The string within (kbd "string")
also acts as a key series button.

Any key sequence must be a string of one of the following:
e a Hyperbole minibuffer menu item key sequence,
e a HyControl key sequence,
e a M-x extended command,

e or a valid key sequence together with its interactive arguments.

debbugs-gnu-mode

Debbugs is a client-server issue tracker used by GNU free software projects, in-
cluding Hyperbole, to manage issues and maintain threads of discussion around
them. You issue queries to a Debbugs server and it returns a listing entry for
each matching issue. When on a GNU Debbugs listing entry in debbugs-gnu-
mode, an Action Key press displays the discussion of the selected issue; an Assist
Key press pretty prints the status of the issue to a window below the listing
window.

debbugs-gnu-query

Display the results of a Debbugs query based on a bug reference string around
point. This works in most types of buffers. If the query includes a single
id number, it displays the original message submission for that id and allows
browsing of the followup discussion. The following buffer text formats are
accepted (with point prior to any attribute):
bug#id-number, bug# id-number, bug #id-number or bug id-number
bug?attri=vall&attr2=val2&attr3=val3
bug#id-number?attri=vall&attr2=val2&attr3=val3
Note that issue or debbugs may also be used in place of bug. See the doc-
umentation at the top of the hib-debbugs.el file for detailed query format
information.

dir-summary

text-toc

Detect filename buttons in files named "MANIFEST" or "DIR". Display se-
lected files. Each filename must be at the beginning of the line and must be
followed by one or more spaces and then another non-space, non-parenthesis,
non-brace character.

Jump to the text file section referenced by a table of contents (toc) entry at
point. This works in any text derived major mode buffer with a ‘Table of Con-
tents’ or ‘Contents’ label on a line by itself (it may begin with an asterisk),
preceding the table of contents. Each TOC entry must begin with some white-
space followed by one or more asterisk characters. Each section header linked
to by the toc must start with one or more asterisk characters at the very be-
ginning of the line. TOCs in Internet RFCs work as well. For example, display
this RFC, <link-to-rfc 822>, and Action Key press on any TOC line to jump to
the associated section. Or try it in the Hyperbole DEMO file.

Chapter 4:

cscope

etags

ctags

id-cflow

rfc-toc

Buttons 32

Jump to a C/C++ source line associated with a Cscope C analyzer output line.
The cscope.el Lisp library available from the Emacs package manager must be
loaded and the open source cscope program available from http://cscope.sf.
net must be installed for this button type to do anything.

Jump to the source line associated with an etags file entry in a TAGS buffer. If
on a tag entry line, jump to the source line for the tag. If on a pathname line
or line preceding it, jump to the associated file.

Jump to the source line associated with a ctags file entry in any buffer. Ctags
files are used by old editors like vi to lookup identifiers. Emacs uses the newer,
more flexible Etags format.

Expand or collapse C call trees and jump to code definitions. Requires cross-
reference tables built by the external cxref program.

Summarize contents of an Internet rfc from anywhere within an rfc buffer. Each
line of the summary may be selected to jump to the associated section.

markdown-internal-1link

Display any in-file Markdown link referent. Pathnames and urls are handled
elsewhere.

org-link-outside-org-mode

Activate an Org link outside of an Org buffer.

git-commit-reference

annot-bib

Display the changeset for a git commit reference, e.g. commit ab5e21, typically
produced by git log. Hyperbole also includes two commands, hypb: fgrep-git-
log and hypb:grep-git-log to list git commit references whose changesets
contain either the string (fgrep) or regular expression (grep) given. Then an
Action Key press displays the associated changeset.

Display annotated bibliography entries defined within the same buffer as the
reference. References must be delimited by square brackets, must begin with
a word constituent character, and must not be in buffers whose names begin
with a ¢ 7 or “*’ character.

hyp-manual

www—url

When on a Hyperbole manual file path, display it. For example, display
hyperbole.html#Smart Keys in a web browser using the local html version
of the Hyperbole manual. When on hyperbole.texi#Smart Keys, jump to the
Smart Keys node in the local Texinfo manual. Without a node name, go to the
initial, top node.

Info file links like hyperbole. info#Smart Keys are handled by the Info-node
implicit button type and displayed in the Emacs Info browser.

When not in an Emacs web browser buffer, follow any non-ftp URL (link)
at point. The variable, browse-url-browser-function, may be used to cus-
tomize which URL browser is called. Terse URLs which lack a protocol prefix,
like www.gnu.org, are also recognized.

http://cscope.sf.net
http://cscope.sf.net

Chapter 4: Buttons 33

pathname

Make a valid pathname display the path entry. Also works for delimited and
non-delimited remote pathnames, Texinfo @file{} entries, and hash-style link
references to HTML, XML, SGML, Markdown or Emacs outline headings, shell
script comments, and MSWindows paths (see ${hyperb:dir}/DEMO#POSIX and
MSWindows Paths for details). Emacs Lisp library files (filenames without any
directory component that end in .el and .elc) are located using the load-path
directory list.

The pathname may contain references to Emacs Lisp variables or shell envi-
ronment variables using the syntax, \"${variable-name}\". See Section B.2.4
[Link Variable Substitution|, page 114, for how this handled. The constant,
hpath:variable-regexp, matches to this pattern within pathnames.

See the function documentation for hpath:at-p for possible delimiters. See the
variable documentation for hpath:suffixes for suffixes that are added to or
removed from the pathname when searching for a valid match. See the function
documentation for hpath:find for special file display options.

If instead is a PATH-style variable name, .e.g. MANPATH, will prompt with
completion for one of the paths and will then display that. If it is the colon or
semicolon-separated string of paths value from a PATH-style variable, the path
at point is displayed; empty paths, e.g. :: represent the current directory, ..
Must have at least four paths within the variable value for this to work.

mail-address

org-id

If on an e-mail address in a specific buffer type, compose mail to that ad-
dress in another window. Applies to any major mode descended from those in
hypb:mail-address-mode-1list, the HyRolo match buffer, any buffer attached
to a file included in hyrolo-file-list, or any buffer with mail or rolo (case-
insensitive) within its name. If hypb:mail-address-mode-1list is set to ‘nil’,
this button type is active in all buffers.

With an Action Key press on an Org Roam or Org node ID at point, display
the associated node. If on the :ID: definition line, display a message about how
to copy the id.

hyperbole-run-test-definition

With an Action Key press on the name in the first line of an ert test def,
evaluate and run the ERT test. With an Assist Key press instead, edebug the
test and step through it.

social-reference

Display the web page associated with a social media hashtag or username ref-
erence at point.

Reference format is:
[facebook|instagram|twitter|x]?[#@]<hashtag-or-username> or
[fblin|tw|x]? [#@]<hashtag-or-username>

For example, ‘fb@someuser’ displays the home page for facebook user

‘someuser’ and ‘in#hashtag’ displays photos with the hashtag ‘hashtag’. The

first part of the label for a button of this type is the social media service name.

The service name defaults to the value of hibtypes-social-default-service

Chapter 4: Buttons 34

(default value of “x”) when not given, so #hashtag would be the same as
x#hashtag.

hyperbole-run-tests
Recognize Action Buttons of the form <hyperbole-run-tests test-
selector> which when activated run Hyperbole tests using the ERT
framework. The test-selector argument is as described in ert-select-
tests.

hyperbole-run-test
Recognize Action Buttons of the form <hyperbole-run-test test-name>
which when activated run individual Hyperbole tests, each given by the
<test-name> argument, an unquoted name.

python-tb-previous-line
Move to prior line with potential Python line ref. In Python, tracebacks may
be on a line just below the source reference line so since not on a Hyperbole
button, move back a line and check for a source reference line again.

hywiki-word
When on a HyWiki word, display its page and optional section. If the associated
HyWiki page does not exist, create it automatically.

hynote-file
When on a HyNote file name stem, display the file and its optional section.
This type is active only in buffers where hywiki-active-in-current-buffer-
p is true. This may require that the global minor mode hywiki-mode has been
enabled.

ert-should
When on an Emacs Regression Test (ERT) result and not on the first line of
a result (its name), on a button or at the end of line, search for a matching
should clause in the source buffer where the associated test is defined. This
speeds debugging when a single test name contains many subtests, each with
their own unique should clauses.

4.3.2 Action Buttons

Explicit buttons all use the same syntax and store their action data in a file separate from
the button source file. Implicit buttons have no external data but use a unique syntax per
implicit button type to recognize the action to run.

For times when you need a cross between the two, with a universal button syntax and
all button data stored in the button source file, there are action buttons.

Action Buttons are a form of implicit buttons that can execute any existing action types,
Emacs Lisp functions, Emacs Regression Tests (ERT tests) or display the values of Emacs
Lisp variables and constants. Such buttons are delimited by angle brackets, < >, and come
in four types:

action type invocations
These begin with an action type name (from the list displayed by {C-hhd t a
RET}) and are followed by any needed arguments to form the action, e.g.
<link-to-file-line "${hyperb:dir}/hact.el" 40>

Chapter 4: Buttons 35

function calls
These are similar to action type invocations but begin with an Emacs Lisp
function name rather than an action type name, e.g.

<find-file-other-window "/tmp">

Generally, such functions are invoked for their side-effects and their return value
is silently ignored. But if a function is a boolean predicate whose name ends in
‘-p’, then the result is displayed in the minibuffer.

test executions
FEach of these consists solely of the name of an ERT test defined with
ert-deftest and surrounded by angle brackets, e.g.

<hbut-tests-ibut-insert-kbd-key>

The above example runs a Hyperbole regression test when activated and shows
the pass/fail result in a pop-up buffer.

variable displays
These consist of an Emacs Lisp variable name only. They display messages
with their variable name and value, e.g.

<fill-column>

If there is a function binding with the same name as the variable you wish to
display, to prevent interpretation as a function call action button, precede the
name with a $, e.g.

<$fill-column>

With action buttons you need not remember any special syntax for each type of implicit
button. You can freely embed them in any type of text and use the Action and Assist keys
on them as you do with any other type of implicit button.

An action button is recognized only if the first name within the angle brackets is an
existing action type or Emacs Lisp symbol. Otherwise, other implicit button types will be
tested and may activate instead.

To activate a frequently used action button by name independent of your current buffer,
simply add it to your global button file and precede it with a label {C-h h i 1}. Then
invoke it by label name with: {C-h h g a}.

4.4 Button Files

It is often convenient to create files filled with buttons as a means of navigating distributed
information pools or for other purposes. These files can also serve as useful roadmaps that
guide a user through both unfamiliar and highly familiar information spaces. Files that are
created specifically for this purpose are called Hyperbole button files.

The Hyperbole menu system provides quick access to two types of these button files:
personal and directory-specific, through the ButFile menu. (The variable, hbmap:filename,
contains the base name of these button files. Its standard value is HYPB.)

A personal button file may serve as a user’s own roadmap to frequently used resources,
like a personal home page. Selection of the ButFile/PersonalFile menu item, {C-h h b p},
displays this file for editing. The default personal button file is stored within the directory

Chapter 4: Buttons 36

given by the hbmap:dir-user variable whose standard value is ~/.hyperb. The default
Hyperbole configuration also appends all global buttons to the end of this file, one per line,
as they are created. So you can edit or annotate them within the file.

A directory-specific button file may exist for each file system directory. Such files are
useful for explaining the contents of directories and pointing readers to particular highlights
within the directories. Selection of the ButFile/DirFile menu item, {C-h h b d}, displays
the button file for the current directory; this provides an easy means of updating this file
when working on a file within the same directory. If you want to view some other directory-
specific button file, simply use the normal Emacs file finding commands.

If you want group and site-specific button files, simply place links to such files at the top
of your personal button file and do so for your colleagues. This provides a flexible means
of connecting to such resources.

4.5 Action Types

Action types are Emacs Lisp commands that specify Hyperbole button behaviors. Hyper-
bole includes a useful set of action types defined within their own namespace and created
with the defact macro. See the Hyperbole file, hactypes.el, for examples of how to define
your own Hyperbole action types.

Each action type may be used by any category of button: global, explicit, or implicit.
The arguments needed by an action type are prompted for at button creation time or in
the case of an implicit button, computed when the button is activated. During button
activation, the arguments are fed to the action type’s body to achieve the desired result.
This body is called the button action.

Hyperbole handles all of this processing transparently. As a user, all you need know is
the set of action types that you can work with when creating explicit or global buttons.

Hyperbole action types in alphabetical order are:

annot-bib
Follow an internal reference KEY within an annotated bibliography, delimiters
=[]

completion
Insert a completion at point into the minibuffer or a buffer. Unless point is at
the end of buffer or if a completion has already been inserted, in which case,
delete the completions window.

debbugs-gnu-query
Display the discussion of Gnu debbugs ID (a positive integer).

display-boolean
Display a message showing the result value of a BOOL-EXPR. Return any
non-nil’ value or ‘t’.

display-value
Display a message showing VALUE (a symbol) and its value. Return any non-
‘nil’ value or ‘t’.

display-variable
Display a message showing the given variable name and its value.

Chapter 4: Buttons 37

eval-elisp
Evaluate a Lisp expression LISP-EXPR for its side-effects and return any non-
nil value.

exec—kbd-macro
Execute a KBD-MACRO REPEAT-COUNT times. KBD-MACRO may be a
string of editor command characters, a function symbol or nil to use the last

defined keyboard macro. Optional REPEAT-COUNT nil means execute once,
zero means repeat until error.

exec-shell-cmd
Execute a SHELL-CMD string asynchronously. Optional non-nil second argu-
ment INTERNAL-CMD inhibits display of the shell command line executed.
Optional non-nil third argument KILL-PREV means kill the last output to the
shell buffer before executing SHELL-CMD.

exec-window-cmd
Asynchronously execute an external window-based SHELL-CMD string.

git-reference
Display the git entity associated with REFERENCE and optional PROJECT.

See ${hyperb:dir}/DEMO#Git (Local) References for examples.
REFERENCE is a string of one of the following forms:

o <ref-item>

e /7<project>/<ref-item>

e /<project>.
<ref-item> is one of these:

one of the words: branches, commits, or tags
the associated items are listed

one of the words: branch, commit, or tag followed by a ’/’ and item id
the item is shown

a commit reference given by a hex number, 55a1f0
the commit diff is displayed

a branch or tag reference given by an alphanumeric name, e.g. hyper20
the files in the branch are listed.

If given, PROJECT overrides any project value in REFERENCE. If no
PROJECT wvalue is provided, it defaults to the value of hibtypes-git-
default-project.

github-reference
Display the Github entity associated with REFERENCE and optional USER
and PROJECT. See ${hyperb:dir}/DEMO#Github (Remote) References for
examples.

REFERENCE is a string of one of the following forms:
o <ref-item>

e <user>/<project>/<ref-item>

Chapter 4: Buttons 38

e <project>/<ref-item>
e /<project>.
<ref-item> is one of these:
e one of the words: branches, commits, issues, pulls, or tags
the associated items are listed
e one of the words: branch, commit, issue, pull or tag followed by a ’/’, -’
'=’, and item id
the item is shown

, or

e an issue reference given by a positive integer, e.g. 92 or prefaced with GH-,
like GH-92
the issue is displayed

e a commit reference given by a hex number, 55a1f0
the commit diff is displayed

e a filename reference given by an alphanumeric name; the file
is displayed.

USER defaults to the value of hibtypes-github-default-user. If given,
PROJECT overrides any project value in REFERENCE. If no PROJECT value
is provided, it defaults to the value of hibtypes-github-default-project.

gitlab-reference
Display the Gitlab entity associated with REFERENCE and optional USER

and PROJECT. See ../DEM0#Gitlab (Remote) References for examples.
REFERENCE is a string of one of the following forms:

o <ref-item>

e <user>/<project>/<ref-item>

e <project>/<ref-item>

e /<group>/<project>. or

e /<project-or-group> (where a group is a collection of projects)
<ref-item> is one of these:

e one of the words: activity, analytics, boards or kanban, branches, commits,
contributors, groups, issues or list, jobs, labels, merge_requests, milestones,
pages, pipelines, pipeline_charts, members or people or staff, projects, pulls,
schedules, snippets, status or tags

the associated items are listed

e one of the words: branch, commit(s), issue(s), milestone(s), pull(s),

snippet(s) or tag(s) followed by a ’/’, ’-’, or ’=", and an item-id
the item is shown

e an issue reference given by a positive integer, e.g. 92 or prefaced with GL-,
like GL-92
the issue is displayed

Chapter 4: Buttons 39

e a commit reference given by a hex number, 55a1f0
the commit diff is displayed

e a branch or tag reference given by an alphanumeric name, e.g. hyper20
the files in the branch are listed.

USER defaults to the value of hibtypes-gitlab-default-user. If given,
PROJECT overrides any project value in REFERENCE. If no PROJECT value
is provided, it defaults to the value of hibtypes-gitlab-default-project.

hyp-config
Insert Hyperbole configuration and debugging information at the end of the
current buffer or within optional OUT-BUF.

hyp-request
Insert help for composing a Hyperbole support/discussion message into the
current buffer or the optional OUT-BUF.

hyp-source
Display a buffer or file from a line beginning with hbut:source-prefix.

kbd-key Execute a normalized KEY-SERIES (series of key sequences) without curly
braces. Each key sequence within KEY-SERIES must be a string of one of the
following;:

e a Hyperbole minibuffer menu item key sequence,
e a HyControl key sequence,
e a M-x extended command,

or a valid key sequence together with its interactive arguments.
Return ‘t’ if the sequence appears to be valid, else ‘nil’.

link-to-bookmark
Display an Emacs BOOKMARK. When creating the button, if in Bookmark
Menu mode, use the bookmark nearest point as the default. Otherwise, uti-
lize the most recently used bookmark in the current file (bookmark-current-
bookmark) as the default, if any.

link-to-buffer-tmp
Display a BUFFER. This type of link is for use in a single editor session. Use
link-to-file instead for a permanent link.

link-to-directory
Display a DIRECTORY in Dired mode.

link-to-doc
Display an online version of a document given by DOC-ID. If the online version
of a document is not found in doc-id-indices, signal an error.

link-to-ebut
Perform an action given by an explicit button, specified by KEY and KEY-
FILE.

link-to-elisp-doc
Display the documentation for FUNC-SYMBOL.

Chapter 4: Buttons 40

link-to-file
Display a file given by PATH scrolled to optional POINT. If POINT is given,
display the buffer with POINT at the top of the window.

link-to-file-line

Display a file given by PATH scrolled to LINE-NUM.

link-to-gbut
Perform an action given by an existing global button, specified by KEY.

link-to-Info-index-item
Display an Info index ITEM cross-reference. ITEM must be a string of the form
(filename)item-name. During button creation, completion for both filename and
item-name is available. Filename may be given without the .info suffix."

link-to-Info-node
Display an Info NODE. NODE must be a string of the form (file-
name)nodename. During button creation, completion for both filename and
nodename is available. Filename may be given without the .info suffix.

link-to-ibut
Perform implicit button action specified by KEY, optional BUT-SRC and
POINT. BUT-SRC defaults to the current buffer’s file or if there is no attached
file, then to its buffer name. POINT defaults to the current point.

When the button with this action type is created, point must be on the implicit
button to which to link.

link-to-kcell
Display a Hyperbole outline cell, given by FILE and CELL-REF, at the top of a
window. See the documentation for (kcell:ref-to-id) for valid CELL-REF
formats.

If FILE is ‘nil’, use the current buffer. If CELL-REF is ‘nil’, show the first
cell in the view.

link-to-kotl
Display at the top of a window the referent pointed to by LINK. LINK may be
of any of the following forms:

< pathname [, cell-ref] >
< [-'&] pathname >
< @ cell-ref >

See the documentation for (kcell:ref-to-id) for valid cell-ref formats.

link-to-mail
Display a mail message with MAIL-MSG-ID from optional MAIL-FILE. See
the documentation for the variable hmail:init-function for information on
how to specify the mail reader to use.

link-to-regexp-match
Find REGEXP’s Nth occurrence in SOURCE and display the location at the
top of the selected window. SOURCE is a pathname unless optional BUFFER-
P is non-nil, then SOURCE must be a buffer name or buffer. Return ‘t’ if
found, signal an error if not.

Chapter 4: Buttons 41

link-to-rfc

Retrieve and display an Internet rfc given by RFC-NUM. RFC-NUM may be a
string or an integer.

link-to-string-match

Find STRING’s Nth occurrence in SOURCE and display the location at the top
of the selected window. SOURCE is a pathname unless optional BUFFER-P
is non-nil, then SOURCE must be a buffer name or buffer. Return ‘t’ if found,
‘nil’ if not.

link-to-texinfo-node

Display the Texinfo node with NODENAME (a string) from the current buffer.

link-to-web-search

man-show

Search web SERVICE-NAME for SEARCH-TERM. Uses hyperbole-web-
search-alist to match each service to its search url or Emacs command. Uses
hyperbole-web-search-browser-function and the browse-url package to
display search results.

Display a man page on TOPIC, which may be of the form
‘<command> (<section>’). Use hpath:display-where setting to
control where the man page is displayed.

org-internal-target-link

org-link

Follow an optional Org mode <<INTERNAL-TARGET>> back to any first link
to it. If INTERNAL-TARGET is nil, follow any internal target link at point.
Otherwise, trigger an error.

Follow an optional Org mode LINK to its target. If LINK is nil, follow any link
at point. Otherwise, trigger an error.

org-radio-target-link

rfc-toc

text-toc

www-url

yt-info

yt-play

Follow an optional Org mode radio <<TARGET>> back to any first link to it.
If TARGET is nil, follow any radio target link at point. Otherwise, trigger an
error.

Compute and display a summary of an Internet rfc in BUF-NAME. Assume
point has already been moved to the start of the region to summarize. Optional
OPOINT is the point to return to in BUF-NAME after displaying the summary.

Jump to the text file SECTION referenced by a table of contents entry at point.

Follow a link given by a URL. The variable, browse-url-browser-function,
customizes the url browser that is used. Valid values of this variable include
browse-url-default-browser and browse-url-generic. See its documenta-
tion string for details.

Display a web page with the metadata information about VIDEO-ID.

Play a VIDEO-ID from the point specified by optional START-TIME-STRING.
If not given, START-TIME-STRING is set to "0s" representing the beginning of
the video. START-TIME-STRING is a colon-separated hours:minutes:seconds
string, e.g. 1:2:44 (1 hour, two minutes, 45 seconds), where the hours and
minutes are optional.

Chapter 4: Buttons 42

yt-search
Search Youtube for SEARCH-TERM.

yt-url Return url to play VIDEO-ID from point specified by optional START-TIME-
STRING. Return nil if START-TIME-STRING is given but is invalid. If not
given, START-TIME-STRING is set to "0s" representing the beginning of the
video.

START-TIME-STRING is a colon-separated hours:minutes:seconds string, e.g.
1:2:44 (1 hour, two minutes, 45 seconds), where the hours and minutes are
optional.

Action types create a convenient way of specifying button behavior without the need
to know how to program. Expert users who are familiar with Emacs Lisp, however, may
find that they often want to tailor button actions in a variety of ways not easily captured
within a type system. In such cases, hui:ebut-prompt-for-action should be set to ‘t’.
This will cause Hyperbole to prompt for an action to override the button’s action type at
each explicit button creation. For those cases where the action type is sufficient, a ‘nil’
value should be entered for the action. An action may be any Lisp form that Emacs Lisp
can evaluate.

4.6 Button Type Precedence

Explicit buttons always take precedence over implicit buttons. Thus, if a button selection
is made which falls within both an explicit and implicit button, only the explicit button
will be selected. Explicit button labels are not allowed to overlap; Hyperbole’s behavior in
such cases is undefined.

If there is no explicit button at point during a selection request, then each implicit
button type predicate is tested in turn until one returns non-nil or all are exhausted. Since
two implicit button types may have overlapping domains, those contexts in which their
predicates are true, only the first matching type is used. The type predicates are tested in
reverse order of definition, i.e. most recently entered types are tested first, so that personal
types defined after standard system types take precedence. It is important to keep this
order in mind when defining new implicit button types. By making match predicates as
specific as possible, one can minimize any overlapping implicit button domains.

Once a type name is defined, its precedence relative to other types remains the same
even if its body is redefined, as long as its name is not changed. This allows incremental
modifications to types without any worry of altering their precedences. See Section 12.2
[Creating Types|, page 88, for information on how to develop or modify types.

4.7 Utilizing Explicit Buttons

Explicit buttons are a fundamental building block for creating personal or organizational
hypertext networks with Hyperbole. This section summarizes the user-level operations
available for managing these buttons.

4.7.1 Creation

Creating explicit buttons is fun and easy. You can always try them out immediately after
creating them or can utilize the Assist Key to verify what buttons do.

Chapter 4: Buttons 43

If you want to create an explicit link button to somewhere within an Emacs window,
then simply drag with the Assist Mouse Key from an editable buffer (outside of a draggable
item) to the target buffer. Note, the same Action Mouse Key drag creates an implicit
button instead.

Alternatively, the Hyperbole minibuffer menu item, Ebut/Create, will create any type
of explicit button, but requires a few steps.

The next two subsections examine explicit button creation and modification in detail.

4.7.1.1 Creation Via Menus

Explicit buttons are managed with the Hyperbole Ebut/ menu accessed with {C-h h e}.
The Create item, {C-h h e c}, creates any type of explicit button. It prompts for an explicit
button label (default is any selected region), an action type, and the action’s associated
arguments. It then creates the button at point and surrounds the label with <(explicit
button delimiters)> like so, to indicate success.

You can use the direct selection techniques mentioned in Section 3.3 [Smart Key Argu-
ment Selection], page 15, to select any completion-based arguments. If you do not mark a
region before invoking the button create command, you will be prompted for both a label
and a target buffer for the button and the delimited label text will be inserted into the
target buffer after a successful button creation.

If a previous button with the same label exists in the same buffer, Hyperbole will add
an instance number to the label when it adds the delimiters so that the name is unique.
Thus, you don’t have to worry about accidental button name conflicts. If you want the
same button to appear in multiple places within the buffer, just enter the label again and
delimit it yourself or copy and paste the button with its delimiters. Hyperbole will interpret
all occurrences of the same delimited label within a buffer as the same button.

4.7.1.2 Creation Via Buffer Link

If you have exactly two Emacs windows in your current frame or exactly two windows visible
across two Emacs frames, you can quickly create explicit link buttons from your current
point (source) to the point in the other window (referent). Simply use the Link menu item,
{C-h h e 1}, to create a new explicit link button or to rename the one at point. Hyperbole
will either use the selected region as the new button label or will prompt you for it. It
will then automatically choose the link type based on the referent location and will either
update the button at point or create a new one.

With more than two windows on screen, Hyperbole will prompt you to choose the referent
window and its associated point to which to link. If the Ace Window package is installed
and active, this will be used to choose the window via keyboard; otherwise, you will be
prompted to select it by mouse.

4.7.1.3 Creation Via Assist Key Drags

Alternatively, to create an explicit link button to a referent displayed within an FEmacs
window, simply drag with the Assist (not the Action) Mouse Key depressed from an editable
source window to another window with the desired link referent and then release. The drag
must start outside of a draggable item, see Section 3.7.5.4 [Displaying Items], page 20.
Hyperbole will either automatically select the button type based on the referent context or
will prompt you to select from one of a few possible link types.

Chapter 4: Buttons 44

In detail, you should split your current Emacs frame into two windows: omne which
contains the point at which you want a button to be inserted and another which shows the
point to which you want to link. Depress the Assist Mouse Key at the source point for the
button (anywhere but on a paired delimiter such as double quotes or parentheses). Then
drag to the other window and release the Assist Mouse Key at the start point of the link
referent. The process becomes quite simple with a little practice. (See Section 4.7.1.1 [By
Menu], page 43, for a more detailed explanation of the explicit button creation process).

If a region was selected prior to the start of the drag, it is used as the button label;
otherwise, you are prompted for the label. Hyperbole uses the link referent context to
determine the type of link to make. If there are a few different types of links which are
applicable from the context, you will be prompted with a list of the types. Simply use the
Action Key or the first capital letter of the link type to select one of the type names to
finish the link creation. Hyperbole will then insert explicit button delimiters around the
button label and will display a message in the minibuffer indicating the button label, its
action/link type, and any arguments, notably the thing to which it links.

The following table shows the type of link that will be created based upon the referent
context in which the Action Key is released.

Referent Context Link Type

Org Roam or Org Id link-to-org-id
Global Button link-to-gbut
Explicit Button link-to-ebut
Implicit Button link-to-ibut
Bookmarks List link-to-bookmark
Info Index Item link-to-Info-index-item
Info Node link-to-Info-node
Texinfo Node link-to-texinfo-node
Mail Reader Message link-to-mail
Directory Name link-to-directory
Filename link-to-file
Koutline Cell link-to-kcell
OQutline Heading link-to-file

Buffer attached to File 1link-to-file

Buffer without File link-to-buffer-tmp

4.7.2 Renaming

Once an explicit button has been created, its label text must be treated specially. Any inter-
word spacing within the label may be freely changed, as may happen when a paragraph is
refilled, but a special command must be invoked to rename it.

The rename command operates in two different ways. If point is within a button label
when it is invoked, it will tell you to edit the button label and then to invoke the rename
command again after the edit. The second invocation will actually rename the button. If
instead the command is originally invoked outside of any explicit button, it will prompt
for the button label to replace and the label to replace it with and then will perform the
renaming. All occurrences of the same button in the buffer will be renamed.

Chapter 4: Buttons 45

The rename command may be invoked from the Hyperbole menu via Ebut/Rename.
Hyperbole does not bind this command to a key by default. {C-h w hui:ebut-rename
RET} will show what if any key is bound within your Emacs. Bind it within your ~/.emacs
file with: (hkey-set-key "\C-cr" 'hui:ebut-rename), for example.

4.7.3 Deletion

Ebut/Delete works similarly to the Rename command but deletes the selected button. The
button’s delimiters are removed to confirm the deletion. If the delete command is invoked
with a prefix argument, then both the button label and the delimiters are removed as
confirmation.

Presently there is no way to recover a deleted button; it must be recreated. Therefore, the
hui:hbut-delete-confirm-flag variable is true by default, causing Hyperbole to require
confirmation before interactively deleting explicit buttons. Set it to ‘nil’ if you prefer no
confirmation.

4.7.4 Editing

Ebut/Edit prompts you with each of the elements from the button’s attributes list and
allows you to edit each in turn.

There is a quicker way to edit explicit link buttons, however. Simply drag with the
Action Mouse Key from within the button label to a link destination in a different window,
just as you would when creating a new button with a mouse drag. Remember that drags
may also be emulated from the keyboard. See Section 4.7.1 [Creation], page 42.

4.7.5 Searching and Summarizing

The Ebut/Help menu may be used to summarize either a single explicit button or all such
buttons within a buffer. The buttons summarized may then be activated directly from the
summary.

Ebut/Help/BufferButs summarizes the explicit buttons in the order in which they
appear in the buffer. Ebut/Help/CurrentBut summarizes only the button at point.
Ebut/Help/OrderedButs summarizes the buttons in alphabetical order. All of these
summary commands eliminate duplicate occurrences of buttons from their help displays.

Ebut/Search prompts for a search pattern and searches across all the locations in which
you have previously created explicit buttons. It asks you whether to match to any part
of a button label or to whole labels only. It then displays a list of button matches with
a single line of surrounding context from their sources. Any button in the match list may
be activated as usual. An Action Key press on the surrounding context jumps to the
associated source line. A press on the filename preceding the matches jumps to the file
without selecting a particular line.

There are presently no user-level facilities for globally locating buttons created by others
or for searching on particular button attributes.

4.7.6 Buttons in Mail

Hyperbole supports embedding buttons within electronic mail messages composed in Emacs.
An enhanced mail reader may then be used to activate the buttons within messages just
like any other buttons. Because this involves complex changes to mail support functions,

Chapter 4: Buttons 46

this feature is disabled by default. Use the Cust/Msg-Toggle-Ebuts minibuffer menu item
to enable it.

Hyperbole supports the following mail readers: Rmail (see Section “Reading Mail with
Rmail” in the GNU Emacs Manual), VM (see Section “Introduction” in the VM Manual)
and MH-e. Button inclusion and activation within USENET news articles is also supported
in the same fashion via the Gnus news reader if available at your site (see Section “The
Gnus Newsreader” in the Gnus Manual). (The hmail.el file defines a generalized interface
that can be used to hook in other mail or news readers if the necessary interface functions
are written.)

All explicit buttons to be mailed must be created within the outgoing message buffer.
There is no present support for including text from other buffers or files which contain
explicit buttons, except for the ability to yank the contents of a message being replied to,
together with all of its buttons, via the (mail-yank-original) command bound to {C-c
C-y}. From a user’s perspective, buttons are created in precisely the same way as in any
other buffer. They also appear just like any other buttons to both the message sender and
the reader who uses the Hyperbole enhanced readers. Button operation may be tested any
time before a message is sent. A person who does not use Hyperbole enhanced mail readers
can still send messages with embedded buttons since mail composing is independent of any
mail reader choice.

Hyperbole buttons embedded within received mail messages behave as do any other
buttons. The mail does not contain any of the action type definitions used by the buttons,
so the receiver must have these or she will receive an error when she activates the buttons.
Buttons which appear in message Subject lines are copied to summary buffers whenever
such summaries are generated. Thus, they may be activated from either the message or the
summary buffers.

Nothing bad will happen if a mail message with explicit buttons is sent to a non-
Hyperbole user. The user will simply see the text of the message followed by a series
of lines of button data at its end. Hyperbole mail users never see this data in its raw form.

In order to alert readers of your mail messages that you can handle Hyperbole mail
buttons, you can set the variable, smail:comment, to an expression that automatically
inserts a comment into each outgoing message to announce this fact. See its documentation
for technical details. By default, no comment is added. To have a comment line added to
your outgoing message, add the following to to your ~/.emacs file before the point at which
you load Hyperbole.

(setq smail:comment
(format "Comments: GNU Hyperbole mail buttons accepted, v%s.\n"
hyperb:version))

This will produce the following line in outgoing messages:
Comments: GNU Hyperbole mail buttons accepted, vX.X.X.

where the X’s indicate your Hyperbole version number. You can cut this out of particular
messages before you send them when need be.

A final mail-related facility provided by Hyperbole is the ability to save a pointer to
a received mail message by creating an explicit button with a 1ink-to-mail action type.
When prompted for the mail message to link to, if you press the Action Key within the mes-

Chapter 4: Buttons 47

sage, the appropriate link parameters will be copied to the argument prompt, as described
in Section 3.3 [Smart Key Argument Selection], page 15.

4.7.7 Buttons in News

Explicit buttons may be embedded within outgoing USENET news articles and may be
activated from within the Gnus news reader. Because this involves complex changes to
news support functions, this feature is disabled by default. Use the Cust/Msg-Toggle-
Ebuts minibuffer menu item to enable it (enabling it for mail also enables it for news and
vice versa).

Once enabled, all Hyperbole support should work just as it does when reading or sending
mail. See Section 4.7.6 [Buttons in Mail], page 45. When reading news, buttons which
appear in message Subject lines may be activated within the Gnus subject buffer as well
as the article buffer. When posting news, the *post-news* buffer is used for outgoing news
articles rather than a mail-related buffer.

Remember that the articles you post do not contain the action type definitions used by
the buttons, so the receiver must have these or she will receive an error when she activates
the buttons. You should also keep in mind that most USENET readers will not be using
Hyperbole, so if they receive a news article containing explicit buttons, they will wonder
what the button data at the end of the message is. You should therefore limit distribution
of such messages. For example, if most people at your site read news with Gnus and use
Hyperbole, it would be reasonable to embed buttons in postings to local newsgroups.

In order to alert readers of your postings that they may send you personal replies with
embedded Hyperbole buttons, the system inserts into news postings the same comment that
is included within mail messages, if enabled. See Section 4.7.6 [Buttons in Mail], page 45,
for details and an explanation of how to turn this feature on.

48

5 Menus

Pulldown and popup menus are available to invoke Hyperbole commands, including those
from the HyRolo and the Koutliner. These menus operate like any other application menus
and are fairly self-explanatory. Use the Remove-This-Menu command on the Hyperbole
menubar menu to get rid of the menu if you do not need it. Invoking Hyperbole from
the keyboard, as explained below, will add the menu back to the menubar. Here is the
Hyperbole Menubar Menu and its Find submenu.

About
Cremonstration
Manual

What-is-New?
Remove-This-Menu
hctivate-Button-at-Pr
Back-to-Prior-Locatic
Button-File
Customize
Crocumentation
Explicit-Button

Find

Global-Button
Implicit-Button
Koutline

Mail-Lists

Rolo

Screen

b A A . .

Window-Caonfiguration

Image 5.1: Hyperbole Menubar Menu

Chapter 5: Menus 49

Manual

Grep-Files
Locate-Files
Match-File-Buffers
Cccur-Here M-s 0
Remove-Lines-Here
Save-Lines-Here
Web-5earch:
Amazon

Bing

Dictionary

Elisp

Facebook

Google

Hub{git)

Images

Maps

RFCs
StackOverflow
Twitter

Wikipedia

Youtube

Image 5.2: Find Menubar Menu

The Hyperbole popup menu, hyperbole-popup-menu, replicates the Hyperbole menubar
menu. It can be bound to a mouse key but is not bound to one by default. It can also
be assigned as the default Action or Assist Key action to use when no matching context is
found. See Section E.2.52 [Smart Key - Default Context], page 159, for details.

The rest of this section discusses only the specialized minibuffer menus which appear
in the minibuffer window and work with all emacs versions on all display devices. They
provide similar capabilities to those of the Hyperbole menubar but additionally allow for
fast menu item selection via the keyboard or mouse. When used with the keyboard, they
provide command access similar to key bindings. In fact, any menu item can be bound to
a global key sequence. See Section C.1 [Binding Minibuffer Menu Items], page 118.

The top-level Hyperbole minibuffer menu is invoked from a key given in your
hyperbole.el file (by default, {C-h h}) or with a click of the Action Mouse Key in the
minibuffer when it is inactive. It should look like this:

Chapter 5: Menus 50

Hy> Act Butfile/ Cust/ Doc/ Ebut/ Find/ Gbut/ HyWiki/ Ibut/ Kotl/ Msg/ Rolo/ Screen/ Win/ historYll

A menu item can be selected in a number of ways:

from the keyboard, by typing the first capitalized character of its name,

e with a press of {RET} or the Action Key or Action Mouse Key on the name,
e by pressing {TAB} or {M-f} to move forward an item,

e or by pressing {Shift-TAB} or {M-b} to move backward an item.

A prefix argument given to one of the movement commands, moves by that number of items
within the menu. A press of the Assist Key on an item displays help for the item, including
the action that it performs. "/" at the end of an item name indicates that it brings up a
submenu.

While a menu is active, to re-activate the top-level Hyperbole menu, use {C-t} or press
the Action Key while on the menu prefix (before the ‘>’ character). This allows you to
browse the submenus and then return to the top menu.

You can reload the Hyperbole minibuffer menus and Smart Key handlers to reflect any
recent edits when on the top-level Hyperbole menu by pressing {RET} or the Action Key
on the menu name (first item that ends with '>’). This will also quit from the menu.

You can quit from the minibuffer menus without selecting an item by using {Q}, or by
pressing {RET} or {M-RET} when at the end of a menu. {C-g} aborts from the minibuffer
whether you are at a menu prompt or any other Hyperbole prompt. {X} both quits the
menus and disables the Hyperbole global minor mode; {C-h h} restores the menus and
re-enables Hyperbole minor mode.

The top-level Hyperbole minibuffer menu items serve the following purposes:

Act Activate button at point or if there is no button at point, prompt for a labeled
explicit or implicit button from the current buffer to activate.

Butfile/ Easy access to a directory-specific or personal file of buttons. HYPB is the name
of the directory-specific button file and ~/.hyperb/HYPB is the personal file
of global buttons. These are good places to begin experimenting with button
creation.

Cust/ Hyperbole option customization. This includes whether ftp and www URLs are
recognized by the find-file commands, where Hyperbole link referents are
displayed, where URLs are displayed, where web search results are displayed,
whether the activation key for each minibuffer menu item is highlighted or not,
whether date stamps are added to rolo entries, and whether to use proportional
or windowful scrolling when a Smart Key is pressed at the end of a line. See
Section B.2 [Customization], page 110.

The ‘KeyBindings/’ submenu allows individual changes to each keyboard key
that Hyperbole binds for its commands, notably the Action Key. See Section 3.1
[Smart Key Bindings], page 11, for more information.

See Appendix C [Hyperbole Key Bindings|, page 118, for complete descriptions
of Hyperbole’s key bindings and how to manage them.

Doc/ Hyperbole documentation quick access. This menu contains an About item
which describes Hyperbole; a Concepts item that discusses how Hyperbole fea-
tures all interrelate; a Demo item which demonstrates a number of interactive

Chapter 5: Menus 51

Ebut/

Find/

Gbut/

Hyperbole features; a New item that details new Hyperbole features, as well
as a WhyUse item with use cases. It also contains the Types/ submenu for
documentation on Hyperbole implicit button and action types.

All explicit button commands. The window-system-based Hyperbole menu in-
cludes an activation menu item for each explicit button found in the current

buffer.

Buffer and file line finding commands and web searching. This menu brings
together many existing line finding commands that are difficult to recall quickly
when needed, simplifying finding and then jumping to matching lines by using
the Action Key. It includes commands for filtering a buffer to just those lines
that either match or do not match a regular expression. It also includes a
submenu for quick access to popular web search engines.

Below are each of the commands on the Find menu.

e GrepFiles - Show numbered line matches for a regexp in all non-backup,
non-auto-save files below the current directory. If in an Emacs Lisp mode
buffer and no PREFIX-ARG is given, limit search to only .el and .el.gz
files. Set hypb:rgrep-command to change the grep command or options.

e LocateFiles - Prompt for a pattern and display a list of all matching path-
names found throughout the file system. On Mac OS X, this uses Spotlight
(the mdfind command); on UNIX, it uses the locate command. Within
the resulting *Locate* buffer, Find/Grep-Files will find matching lines
within only these paths (files and directories).

e MatchFileBuffers - Show numbered line matches for regexp in all file-based
buffers.

e OccurHere - Show numbered line matches for regexp from this buffer.
e RemoveLines - Following point, remove all lines that match regexp.
e Savelines - Following point, keep only lines that match regexp.

e Web/ - Select a search engine and term and search with them or use Jump
to go to a named URL (using webjump library).

Hyperbole binds the key {C-c /} for quick access to this menu, if it is not
already bound prior to Hyperbole’s initialization. The Cust/Web-Search-
Search menu sets the option, hyperbole-web-search-browser-function,
which determines whether web search results are displayed within Emacs or
with an external web browser. A short video introduction to the Find/Web
menu may be found at https://youtu.be/81M1Jed0-0M.

The Find/Web menu looks like this:

Web> Amazon Bing Dictionary ducKduckgo Elisp Facebook
Google gitHub Images Jump Maps RFCs StackOverflow
Wikipedia X Youtube

All global button commands. Global buttons are accessed by name rather than
by direct selection. The Hyperbole menubar menu also includes an activation
menu item for each global button.

https://youtu.be/8lMlJed0-OM

Chapter 5: Menus 52

HyWiki/

Ibut/
Kotl/

Msg/
Rolo/
Screen/

Win/

historY

A HyWiki is a personal wiki of interlinked Org files (pages) in a single directory,
where each page name automatically becomes a live HyWikiWord link back to
the associated page whenever added in any file in the HyWiki directory. This
menu includes commands to create, edit, grep, search for HyWikiWords and
publish a HyWiki to the web.

All implicit button commands.

Autonumbered, structured outliner commands with per-node hyperlink an-
chors. See Chapter 9 [Koutliner|, page 63.

Hyperbole-specific email messaging commands. Use this to send mail to a
Hyperbole discussion mailing list.

Hierarchical, multi-file contact manager lookup and edit commands. See
Chapter 10 [HyRolo], page 77.

Window, frame and buffer display control commands. See Chapter 8 [HyCon-
trol], page 57.

Window configuration management commands, such as adding and restoring
window configurations by name. See Chapter 11 [Window Configurations,
page 85.

Return to previous positions in the button traversal history.

93

6 HyWiki

HyWiki is Hyperbole’s markup-free, personal Wiki system for note-taking and automatic
HyWikiWord highlighting and hyperlinking. It uses Org mode for note taking and
adds automatic hyperlinking and highlighting of HyWikiWords in Org files within
hywiki-directory (default = ~/hywiki). With {C-h h h p} you can publish any updated
part of your HyWiki to an HTML directory for export to the web.

6.1 HyWikiWords

A HyWikiWord is a capitalized word that contains upper and lowercase letters only and
has a corresponding HyWikiWord.org wiki page file below hywiki-directory. HyWiki-
Words in HyWiki pages are automatically highlighted and turned into hyperlinks as soon
as you type them, without the need for any delimiters. However, if you prefer to use Org-
style links, simply delimit them with double square brackets and the ‘hy:’ prefix like so:
[[hy:MyWikiWord]].

To create a new HyWikiWord, insert it into a text buffer, move point onto the word
and press {C-h h h c} to create a new blank HyWiki page that you can immediately start
editing. HyWiki is built for scalability and has been tested to be performant with 10,000
HyWikiWords.

The Action Key can create new HyWiki pages when on an undefined HyWikiWord
if you change the setting that controls the Org mode {M-RET} binding. Have Hyper-
bole override Org’s control of that key in all Action and Assist Key contexts with the
‘A11-Hyperbole-Contexts’ setting bound to {C-h h h o a}.

To jump to a HyWiki page, simply move point onto any highlighted HyWikiWord and
press the Action Key {M-RET}. This also highlights any other instances of HyWikiWords
across all visible Emacs windows. If you have set the Org {M-RET} option to ‘None’ with
{C-hhh o i}, then you will have to use the HyWiki Act menu command {C-h h h a}
instead to jump to HyWiki pages.

HyWikiWord links can also jump to a section headline within a page by following the
page name with a '#’ character and then the full section headline name (sans any leading
asterisks). For example, if your Emacs page has a "Major Modes" section, then either
Emacs#Major-Modes or [[hy:Emacs#Major Modes|] will work as a link to that section.
Note that without the square bracket delimiters, you must convert spaces in section names
to -’ characters. As long as the page exists, section links are highlighted regardless of
whether associated sections exist or not. When activating a link with a section reference,
you will get an error if the section does not exist.

HyWikiWords can also be highlighted and treated as hyperlinks in non-special text
and programming buffers outside of the hywiki-directory when the global minor mode,
hywiki-mode is enabled. Toggle it via {C-h h h t} or {M-x hywiki-mode RET}.

If you prefer Org-style links in buffers outside of hywiki-directory, use the 'hy:” prefix,
as in: [[hy:MyWikiWord]]. If you set hywiki-org-link-type-required to ‘nil’, then you
don’t need the prefix, e.g. [[MyWikiWord]]; existing HyWiki page names then will override
Org’s standard handling of such links. To prevent Org mode’s binding of {M-RET} from
splitting lines and creating new headlines when on a HyWikiWord whose page has not yet

Chapter 6: HyWiki 54

been created, set hsys-org-enable-smart-keys to ‘t’ so that Hyperbole’s Action Key does
the right thing in this context.

Once Hyperbole has been loaded and activated, HyWikiWords (with or without delim-
iters) are automatically highlighted and active in the following contexts:

e HyWiki page buffers;
e non-special text buffers, after ‘hywiki-mode’ is enabled;

e comments of programming buffers, after ‘hywiki-mode’ is enabled.

As HyWikiWords are typed, highlighting occurs after a trailing whitespace or punctu-
ation character is added, or when the HyWikiWord is surrounded by a matching pair of
characters such as curly braces or single square brackets. Since Org links use double square
brackets and Org targets use double or triple angle brackets, HyWikiWords within these
delimiters are ignored once the brackets are in place.

The custom setting, hywiki-word-highlight-flag (default = ‘t’), means HyWiki-
Words will be auto-highlighted within HyWiki pages. Outside of such pages, hywiki-mode
must also be enabled for such auto-highlighting.

The custom setting, hywiki-exclude-major-modes (default = ‘nil’), is a list of major
modes to exclude from HyWikiWord auto-highlighting and recognition.

Within programming modes, HyWikiWords are highlighted and hyperlinked within com-
ments only. For programming modes in which you want HyWikiWords recognized every-
where, add them to the custom setting, hywiki-highlight-all-in-prog-modes (default
= '(lisp-interaction-mode)).

HyWiki adds one implicit button type to Hyperbole: hywiki-word, which creates and
displays HyWikiWord pages. This is one of the lowest priority implicit button types so that
it triggers only when other types are not recognized first.

6.2 Publish HyWiki

A HyWiki can be exported to HTML for publishing to the web via Org mode’s pub-
lish a project feature. {C-h h h p} or {M-x hywiki-publish-to-html RET} publishes any
changed files in the HyWiki. Give that command a prefix argument to force republishing
of all HyWiki pages.

The full set of HyWiki-specific Org publish properties are set in the variable hywiki-org-
publish-project-alist. When the HyWiki code is loaded into Emacs, it automatically
integrates these properties with Org’s publishing framework, so when in a HyWiki page,
you can use Org’s standard {C-c C-e P p} current project publish command if you prefer.

There are a few publishing settings you can customize prior to loading Hyperbole’s
HyWiki code.

HyWiki html files are saved in: (hywiki-org-get-publish-property :publishing-
directory) Customize this directory with: {M-x customize-variable RET hywiki-org-
publishing-directory RET}

HyWiki html files are generated by the function given by: (hywiki-org-get-publish-
property :publishing-function) Customize the value of this function if necessary with:
{M-x customize-variable RET hywiki-org-publishing-function RET}

Chapter 6: HyWiki 55

6.3 HyWiki Menu

The HyWiki minibuffer menu offers quick access to important HyWiki features. It looks
like this:

HyWiki> Act Create EditPages FindPage GrepConsult Help Info Link ModeToggle Org-M-RET/ Pub-Jj
lish TagFind WikiWordConsult
The GrepConsult and WikiWordConsult items appear only when the Consult package is
installed prior to loading Hyperbole. These commands are especially useful as they allow
for fast line-level searching across many files with interactive search pattern narrowing.

Below are descriptions of each menu item.
Act Activate HyWikiWord link at point.

Create Create and display a new HyWiki page. Shows existing page names to aid in
new naming.

EditPages Display and edit HyWiki pages in current hywiki-directory. Use dired un-
less action-key-modeline-buffer-id-function is set to smart-treemacs-
modeline, then use the treemacs package.

FindPage Prompt with completion for and find a HyWiki page, typically editable. If the
page is already in a buffer, point is left unchanged.

GrepConsult
Grep over HyWiki pages with interactive hywiki-consult-grep. Any words
may be used.

Help Report on a HyWikiWord’s attributes.

Info Display Hyperbole manual section on HyWiki.

Link Prompt for and add a link at point to a HyWiki page.
ModeToggle

Toggle global minor mode hywiki-mode that enables HyWikiWord hyperlinks
in buffers outside of hywiki-directory.

Org-M-RET/
Menu to customize contexts in which Hyperbole Action and Assist Keys override
Org’s {M-RET} command. The default is when on ‘Hyperbole-Buttons-Only’.
Use ‘Al1-Hyperbole-Contexts’ to make the Action Key create new HyWiki
pages when pressed on as-yet undefined Hy WikiWords; otherwise, you must use
{C-h h h c} to create a new HyWiki page instead. Use ‘None’ if you want to
use Org’s {M-RET} command in every context within Org mode.

Publish Publish modified pages in the HyWiki to HTML; prefix arg to publish all pages.
TagFind Find a matching Org tag across all HyWiki pages.

WikiWordConsult
Use hywiki-consult-grep to prompt for a HyWikiWord and then consult grep
for and select an occurrence within the HyWiki.

56

7 HyNote

HyNote is a start on Hyperbole’s note taking system. HyNote supports Org, Markdown,
Koutline and Emacs Outline file formats.

Presently HyNote simply provides an experience similar to the HyWiki for Org
and Org Roam file name stems and headline links for files found in the directories of
hynote-directory-list, which defaults to the default Org and Org Roam directories. For
example, if the file “/0rg/hyperbole-cmds.org has a headline, ‘hyrolo-fgrep Command’,
then "hyperbole-cmds#hyrolo-fgrep Command" in any file will link to that headline. See
the documentation for the implicit button type that HyNote defines, hynote-file.

In the future, HyNote will also provide a universal way to easily link to information
across many file formats.

For more, Chapter 6 [HyWiki], page 53.

o7

8 HyControl

Hyperbole includes the fastest, easiest-to-use Emacs window and frame management system
available, HyControl, found under the Hyperbole Screen menu. If you use a lot of Emacs
windows or frames (typically, window system windows) then this chapter is for you.

HyControl interactively adjusts the layout of your windows and frames down to the
pixel-level if desired. You adjust the location, size and display elements of your windows
and frames until they look as you like and then simply quit HyControl and go back to work.

Hyperbole binds the key {C-c \} for quick access to HyControl’s window control
menu, if it was not already bound prior to Hyperbole’s initialization; otherwise, the
Screen/WindowsControl minibuffer menu item, {C-h h s w}, will do the same thing. To
start HyControl with the frames menu instead, use Screen/FramesControl, {C-h h s f}.

Once in HyControl, your minibuffer window at the bottom of the selected frame will
display a summary of keys you may use to adjust your windows until you press {q} or {Q}
to quit from HyControl. The key, {t}, will always toggle between controlling frames and
windows, the submodes of HyControl, with the upper left of the minibuffer prompt showing
which type of control is active.

A number of commands take a single numeric argument, e.g. movement and sizing, which
you can enter by typing a period to clear the argument, followed by any positive number
up to 1000. You may also use the {C-u} universal argument key to apply a multiplier of
4 to the argument, any number of times. Any entry that pushes the argument over 1000,
restarts it, so 10005 would produce an argument of 5.

The table below explains what each key does in HyControl mode. If the explanation does
not say otherwise, then the key applies in both window and frame submodes.

{7} Toggle whether HyControl displays key binding help in the minibuffer.
{.} Clear the prefix argument to a value of 0.
{0-9%} Multiply the prefix argument by 10 and add the digit pressed (or subtract it if

prefix argument is negative).

{-} If HyControl mode was just enabled or the last command was prefix arg-related,
invert the value of the prefix argument or if 0, set it to -1. Otherwise, depending
on whether in Frames or Windows mode, shrink the frame or window to the
minimum size needed to display its text.

{C-u} Multiply the prefix argument by 4 each time this is pressed.
{@}

Display a grid of windows in the selected frame sized according to the prefix
argument or via a prompted input. Left digit of the argument is the number
of grid rows and the right digit is the number of grid columns to display. The
buffers displayed in the grid are determined by the value of the prefix argument

given to the command or by the selected items in the current window if in
Buffer Menu, Ibuffer Menu or Dired mode.

With no prefix argument and no items chosen, the selected frame’s buffer list is
filtered through hycontrol-display-buffer-predicate-1list, a list of predi-
cate/boolean filter functions. The default predicate selects existing buffers with
attached files and displays those.

Chapter 8:

{a}

HyControl 58

hyperbole.pdf - o x

o work efficiently

m the keyboard or by dragai\

okt 16,57 DNSTALL
© 16,57 MANIFEST

nov 22,35 Maketite
v 2235

heal

I Chapter 9: Developing with Hyperbole

9.2.1 Action Type Creation

(actype:create)). The ca
of

a Snart Key and the

Image 8.1: 2x3 Windows Grid

With a prefix argument of 0, the user is prompted for a major mode name
and the windows grid size. Only those buffers with the named major mode are
displayed.

With a prefix argument < 0, the user is prompted for a shell glob-type file
pattern; matching files are read into buffers and displayed in an auto-sized
windows grid.

Otherwise, when the prefix argument is an invalid size, the windows grid com-
mand prompts for the grid size.

When done, this resets the persistent prefix argument to 1 to prevent following
commands from using the often large grid size argument.

If you ever need to experiment with different sized window grids, use {M-x
hycontrol-window-grid-repeatedly RET}. It will repeatedly prompt you for
a grid size and then display it. When you are done, simply press {RET} to exit.

Programmatically, there are a number of ways to generate and display
a windows grid. hycontrol-windows-grid-by-file-pattern creates
a windows grid from a glob file pattern. It is bound to {C--1 C-c @}.
hycontrol-windows-grid-by-buffer-1list creates a windows grid from a list
of buffers or buffer names. hycontrol-windows-grid-by-file-list creates
a windows grid from a list of file names.

Cycle through common width adjustments of a frame, such as 25% and 50%.
Widths are given in screen percentages by the list hycontrol-frame-widths
and typically go from widest to narrowest.

Chapter 8: HyControl 59

{A}

{h}

{s}
{w}
{n}
{h}

{1}

{1/3/K/M}

{w}

{up}
{down}
{left}
{right}

{c}

{d}
{D}

{1}

{o}
{0}

Cycle through common height adjustments of a frame, such as 33.3% and 75%.
Heights are given in screen percentages by the list hycontrol-frame-heights
and typically go from tallest to shortest.

Increase height by argument lines (line height determined by buffer character
height).

Shorten height by argument lines.
Widen by argument characters.
Narrow by argument characters.

In FRAMES mode, resize frame’s height and width to about argument percent
of the screen size.

In FRAMES mode, resize frame’s height to about argument percent of the
screen size.

In WINDOWS mode, the keys I, J, K, M move directionally (based on
QUERTY key layout) between windows in the selected frame. In FRAMES
mode, they move directionally through visible frames. These use the windmove
and framemove libraries. When any of these keys are pressed, Hyperbole will
prompt to install the needed library if not already installed.

In FRAMES mode, resize frame’s width to about argument percent of the screen
size.

Move frame in the specified direction by argument pixels.

With each press, cycle the selected frame’s position clockwise through the mid-
dle of edges and corners of the screen. With an argument of 0, reset the cycle
position to the upper left corner. Respects the pixel edge offsets returned by
hycontrol-get-screen-offsets.

Delete selected window or frame based on mode.

Prompt for confirmation and then delete non-selected windows or frames based
on mode.

In FRAMES mode, lower the selected frame below all other Emacs session
frames.

Select the next window in the window list, across all visible frames.

Select the next visible frame.

{keypad number}

In FRAMES mode, move the frame directly to the screen edge position given
by the numeric keypad layout. For example, 3 moves the frame to the bottom
right corner and 8 moves it to the middle of the top edge. Keypad numeric
keys do not adjust the argument. Respects the pixel edge offsets returned by
hycontrol-get-screen-offsets.

Chapter 8: HyControl 60

{p}

{r}

{[}

{1}
{(+

O}

{£}
{F}

{1}
{J}
{K}
{M}

{i}
{j}
{k}
{m}

{

}

{-}

{+}

Display a virtual numeric keypad for emulating a keypad on keyboards without
one. Each digit key operates just as a numeric keypad key would.

In FRAMES mode, raise the selected frame above all other Emacs session
frames.

Create a new atop window or frame depending on mode. If a frame, it is sized
to the same size as the selected window and offset from the selected frame by
the pixel amounts given by hycontrol-frame-offset.

Create a new sideways window or frame depending on mode.

Save the current window or frame configuration based on mode. Whenever,
HyControl is invoked, the current window and frame configurations are saved
automatically. So use this command only if you have changed the configuration
and wish to save it temporarily.

After confirmation, restore the last saved window or frame configuration based
on mode.

Clone the selected window to a new similarly sized frame.

Clone the selected window to a new similarly sized frame. Delete the
original window unless there is only one window in the source frame or if
hycontrol-keep-window-flag is non-nil.

Select another window or frame in the given direction depending on the current
HyControl mode. I=above, J=left, K=right and M=below.

Expand the selected frame to the respective screen edge based on U.S. keyboard
key layout. i=top, j=left, k=right and m=bottom screen edge. If already at
the edge, adjusts the perpendicular dimension to ARG percent of the screen
(50% by default if ARG is 1 or nil) but keep it at the screen edge. Respects
the pixel edge offsets returned by hycontrol-get-screen-offsets.

After confirmation, in WINDOWS mode, make the current frame’s windows
approximately the same size. In FRAMES mode, make all visible frames the
size of the selected frame.

In WINDOWS mode, shrink window to its smallest possible number of lines
to display the entire buffer, if possible. Otherwise or if the window is already
displaying all of its lines, shrink it to about one line, if possible.

In FRAMES mode, make the frame as small as possible while still displaying
it.

Make the window or frame (based on mode) as large as possible. In FRAMES
mode, a second press of this key restores its size to whatever it was prior to the
first use of this command.

Chapter 8: HyControl 61

{b} Bury the selected buffer within the buffer list, displaying the next buffer.
{u} Unbury the bottom buffer in the buffer list and display it in the selected window.
{3 Swap two buffers between the selected window or frame and one other. In

WINDOWS mode, there must be precisely two windows in the selected frame.
In FRAMES mode, the second frame must have a single window.

{Z} Zoom in selected window or frame text based on mode, increasing default face
size.
{z} Zoom out selected window or frame text based on mode, increasing default face

size. Zooming supports an argument of between 1 and 9 (any other value sets
the argument to 1). The argument determines the number of sizes by which to
zoom.

FRAMES mode zooming requires the separately available zoom-frm.el library.
WINDOWS zooming works without this library.

{t} Toggle between WINDOWS and FRAMES submodes.
{Q}
{q} Press {Q} to globally quit HyControl mode and restore normal key bindings.

Typically {q} works as well, unless in a help buffer where {q} is bound to
quit-window, then that is run instead of quitting HyControl. A second press
of {q} will then quit HyControl.

The rest of this section goes into some technicalities about HyControl settings. You may
ignore it if you are not familiar with Emacs variables and functions or with customized
Emacs.

HyControl allows placement of frames at screen edges and corners with the frame cycle
command, {c}, and direct placement using the layout of the numeric keypad keys, if avail-
able, or the p virtual keypad key otherwise. (Note that a screen may span multiple physical
monitors).

To prevent widgets and toolbars at the corners of the screen from being obscured, Hy-
Control can offset each frame from each screen edge by a fixed number of pixels. These
offsets are specified by the variable,hycontrol-screen-offset-alist and can differ for
each type of screen; see its documentation for details. If you change its value, then call
hycontrol-set-screen-offsets to set any new offset values. hycontrol-get-screen-
offsets returns the list of offsets in clockwise order starting from the top edge. Both
functions display a minibuffer message with the current offsets when called interactively.

When HyControl creates a new frame, it automatically sizes it to the same size as the
previously selected frame and offsets it from that frame by the (X . Y) number of pixels
given in the variable, hycontrol-frame-offset.

The source code for the HyControl system is in hycontrol.el within your Hyper-
bole source directory, given by hyperb:dir. HyControl uses standard Emacs keymaps,
so any keys can be rebound. Remember that Hyperbole typically binds {C-c \} to the
windows control menu, but if you would like to bind either of the two HyControl mi-
nor mode invocation commands to keys, they are, hycontrol-enable-windows-mode and

Chapter 8: HyControl 62

hycontrol-enable-frames-mode. Generally, you need only one of these bound to a key
since when you press that key, the other command can be reached by pressing {t}.

63

9 Koutliner

The Hyperbole outliner, the Koutliner (pronounced Kay-outliner), produces structured,
autonumbered documents composed of hierarchies of cells. Each cell has two identifiers, a
relative identifier indicating its present position within the outline and a permanent identi-
fier called an idstamp, suitable for use within hyperlink references to the cell. The idstamp
is typically not displayed but is available when needed. See Section 9.3 [Autonumbering],
page 66.

Cells also store their time of creation and the user who created the cell. User-defined
attributes may also be added to cells. See Section 9.8 [Cell Attributes], page 75.

This chapter expands on the information given in the EXAMPLE.kot1 file included with
Hyperbole. Use {C-h h k e} to display that file, as pictured on the following page. It is an
actual outline file that explains major outliner operations. You can test out the viewing,
editing and motion commands with this file since a personal copy is made when you invoke
this command. If you have already edited this file and want to start with a fresh one, give
the command a prefix argument: {C-u C-h h k e}.

See Appendix D [Koutliner Keys]|, page 122, for a full summary of the key bindings and
commands available in the Koutliner.

EXAMPLE kotl = u] x

File Edit Options Buffers Tools Hyperbole Koutline Text Help

c = [\ el
B B X e Gude g9 G OB OQ
F 1. The Koutliner is a part of the Hyperbole information management system. I

2. The Keoutliner produces hierarchically structured fileslcnnsisting of
trees of cells.

2a. A cell is an element of the outline which has its own display label
and unique, permanent identifier (idstamp).

2b. Idstamps support the creation of hyperlinks to cells which are
maintained as the structure of an outline changes.

3. Features implemented include:

3a. Full on screen editing (just like a Macintosh). Click to type in a
node (we call them cells) and just enter text. Structure is
automatically maintained for you. All of the standard Emacs editor
command set is supported both through keyboard, menu and mouse
interaction. Menu usage is documented in the Hyperbole Manual; this
document discusses fTeatures and their associated kKeyvboard commands
only.

3b. Advanced outline processing

+
-i--- EXAMPLE.kotl <|bn= Top L3 (Kotl Fill Narrow)

Image 9.1: Koutliner Screenshot

Chapter 9: Koutliner

9.1 Menu Commands

64

The Kotl/ menu entry on the Hyperbole minibuffer menu provides access to a number of

major Koutliner commands:

Description

Menu Item Command

All kotl-mode:show-all
Blanks kvspec:toggle-blank-lines
Create kfile:find

Downto kotl-mode:hide-sublevels
Examp <sample outliner file>
Format/ Submenu

Hide kotl-mode:hide-tree

Info <outliner documentation>
Kill kotl-mode:kill-tree

Link klink:create

Overvw kotl-mode:overview

Show kotl-mode:show-tree

Top kotl-mode:top-cells

Vspec kvspec:activate

Expand all cells

Toggle blank lines on or off
Edit or create an outline
Hide cells deeper than a level
Show self-descriptive example
Import/Export commands

Hide tree with root at point
Show outliner manual section
Kill the current tree

Create a link to another cell
Show first line of each cell
Show tree with root at point
Collapse to top-level cells
Set a view specification

Chapter 9: Koutliner 65

The popup and menubar Koutline menu, as displayed here, offers a more complete
set of the Koutliner commands. {C-mouse-3} pops up the mode-specific menu in Emacs.
Experiment with the menu or read the following sections explaining commands.

All-Cells-Attributes C-u-1C-ch

Example C-hhke
Help C-hm
Manual

Remove-This-Menu

Edit b
Jump-to k
Label-Type]
Link ¥
Tree ¥
Wiew ¥
Find {Cpen) C-w C-f
Find-Read-Only C-x C-r
Save C-xC-5
Toggle-Read-Only C-xC-q
Write (Save as) C-x C-w

Export-to-HTML

Import-to-Koutline

Cuit

Image 9.2: Koutline Menu

9.2 Creating Outlines

In addition to the Kotl/Create menu item, you can create and experiment with outline
files simply by finding a file, {C-x C-£}, with a .kotl suffix. .kot will also work for users
impaired by operating systems with 3-character suffix limitations.

Chapter 9: Koutliner 66

When a new koutline is created, an invisible root cell is added. Its permanent and relative
ids are both 0, and it is considered to be at level 0 in the outline. All visible cells in the
outline are at level 1 or deeper, and thus are descendants of this root cell. Some koutliner
commands prompt for cell numbers as arguments. An argument of 0 makes commands
operate upon the entire outline.

An initial level 1 cell is also created to make it easy to start entering text in the outline.
A koutline always has at least one visible cell in it.

See Section 9.3 [Autonumbering], page 66, which explains how cells are labeled according
to their respective levels in the outline and how these labels are updated as the structure
of the outline changes.

9.3 Autonumbering

See Section 9.5.1 [Adding and Killing], page 67, for information on how to add new cells to
or remove cells from a koutline. As you do this, or as you promote or demote cells within
the outline, the labels preceding the contents of each cell automatically update to reflect
the new structure. These labels are also known as autonumbers and as relative ids because
they change as the structure changes.

The outline structure is shown by these labels and by the indentation of each outline
level. Normally, each deeper level is indented another three characters, to reflect the nesting.

The default autonumbers are called alphanumeric labels because they alternate between
using numbers and letters to distinguish each successive level. Each alphanumeric label
uniquely identifies a cell’s position in an outline, so that there is no need to scan back to
prior cells to see what the current section number of an outline is. This is similar to a
legal numbering scheme but without all the period characters between level numbers. As
an example, 1b3 is equivalent to a legal label of 1.2.3. Both refer to the 3rd cell at level 3,
below the 2nd child of the first cell at level 1. Said another way, this is the 3rd child of the
1st cell’s 2nd child. In other words, it is easier to visualize hierarchies than to talk about
them.

Alphanumeric labels are the default because they are shorter and easier to read aloud
than equivalent legal ones. They also simplify distinguishing between even and odd level
labels because of the alternating character set.

You can change the labeling scheme used in a particular outline with the command {C-c
C-1}. A {7} will show all of the labeling options. The default, alpha labels, legal labels,
and permanent idstamps (permanent cell ids) are all available.

A cell label is normally followed by a period and a space, called the label separator, prior
to the start of the cell contents. You can change the separator for the current outline with
{C-c M-1}. {C-u C-c M-1} will additionally change the default separator value used when
new outlines are created (for the current session only). For example, use the value " " (two
spaces) to get eliminate the trailing period after each cell label. The separator must be at
least two characters long but may be longer.

If you find a separator that you prefer for all outlines, change the separator setting perma-
nently by adding the following line to your Emacs initialization file, ~/.emacs, substituting
for ‘your-separator’:

(setq kview:default-label-separator "your-separator")

Chapter 9: Koutliner 67

9.4 Idstamps

Idstamps (permanent ids) are associated with each cell. They maintain hyperlinks as cells
are reordered within a koutline. See Section 9.7 [Klinks|, page 74. Idstamps may be
displayed in place of the outline level relative ids. Use {C-c C-1 id RET}.

An idstamp counter for each outline starts at 0 and is incremented by one each time a
cell is added to the outline. This idstamp stays with the cell no matter where it is moved
within the outline. If the cell is deleted, its idstamp is not reused.

The 0 idstamp is always assigned to the root node of the entire outline. This node is
never visible within the outline, but is used so that the outline may be treated as a single
tree when needed. Idstamps always begin with a 0, as in 012, to distinguish them from
relative ids.

9.5 Editing Outlines

Text editing within the Koutliner works just as it does for other buffers, except when you
need to deal with the structural components of an outline. Within the contents of a cell,
all of your standard editing keys should work properly. You can just type in text and the
left and right margins of the lines will be maintained for you. See Section 9.5.5 [Filling],
page 70, for the times when you need to refill a paragraph or to control when filling occurs.

Don’t invoke editing commands with {M-x command-name RET} since the Koutliner uses
differently named commands made to act like the regular editing commands. Koutliner
commands, however, account for the structure and indentation in koutlines.

You may use the mouse to select parts of the contents of a single cell for editing. But
don’t drag across cell boundaries and then edit the selected region, since that will destroy
the outline structure.

9.5.1 Adding and Killing

{C-j} adds a new cell as a successor sibling of the current cell, that is, the next cell at the
same level as the current cell. If you enter a positive number as a prefix argument, that
number of cells will be inserted, all at the same level. {C-u C-j} is handled specially. It
adds a single cell as a child of the current cell. {C-c a} does the same thing. {C-c p} adds
the cell as the successor of the current cell’s parent.

{C-c C-k} Kkills the current cell and its entire subtree. {C-c k} Kkills the contents of a
cell from point through the end of the cell; it does not remove the cell itself. {C-u C-c k}
kills the entire contents of the cell regardless of the location of point. You may then yank
the contents into another cell or another buffer with {C-y}.

9.5.2 Promoting and Demoting

Demotion is the act of moving a tree down one or more levels in the outline. The new tree
will become either the successor or the first child of the cell which precedes it in the outline.
Promotion is the inverse operation. Note that trees (cells and their entire substructure) are
promoted and demoted, not individual cells.

| -=——— e |
| Promotion Outside Org Table | Demotion Outside Org Table |

Chapter 9: Koutliner 68

ettty oo I
M-TAB or Shift-TAB	TAB
M-<left>	M-<right>
M-Shift-<left>	M-Shift-<right>
C-c C-,	C-c C-. l
C-c C—<	C-c C—> [
—==—mmm oo o I	

Trees may be demoted or promoted by pressing TAB or {M-TAB}. {M-0 TAB} and {M-0
M-TAB} demote and promote trees and additionally refill each cell that is not specially
marked to prevent refilling. See Section 9.5.5 [Filling], page 70. A positive or negative
prefix argument to these commands promotes or demotes the tree up to a maximum of the
number of levels given by the argument. The outline may not support movement of the tree
by the number of levels requested, however, in which case the maximal possible adjustment
is made.

{M-1 TAB} behaves specially. It toggles the function of TAB and {M-TAB} so that they
insert a tab and remove the previous character, respectively. This is useful when one is
formatting information within a single cell. When in this mode, {TAB} inserts a literal TAB
character, by default. Set the variable, kotl-mode:indent-tabs-mode, to ‘nil’ if you want
space characters used to form the tab. Use {M-1 TAB} to toggle the TAB and {M-TAB} keys
back to promoting and demoting trees.

The Koutliner also supports Org Table editing, see Section “Tables” in the Org Mode
Manual, via Org table minor mode. Use {M-x orgtbl-mode RET} to toggle this on and off.
A press of the Action Key on a | symbol, also toggles this minor mode on or off.

Tree demotion and promotion keys match the defaults in Org mode and Outline mode,

plus some easier to type ones. The tables below summarize which keys work whether inside
an Org table or outside.

Note that you must use {M-0 TAB} and {M-0 M-TAB} to demote/promote Koutline trees
when in a table since TAB and {M-TAB} move between fields within a table.

| == Ho e |

| Promotion Inside Org Table | Demotion Inside Org Table |

| === it |

| M-O M-TAB | M-O TAB I

| C-c C-, | C-c C-. |

| C-c C-< | C-c C-> [
+

9.5.3 Relocating and Copying

Like Org mode, you can move the tree rooted at point past trees rooted at the same level
with {M-<down>} and before trees with {M-<up>}. Give a prefix argument to move past
that many other trees. (A 0 valued argument is automatically changed to 1).

For maximum flexibility in rearranging outlines, there are commands that move or copy
entire trees anywhere within the outline as described in the table below. Each of these
commands prompts for the label of the root cell to move or copy and for a second cell which
specifies the new location for the moved or copied tree. You may either accept the default

Chapter 9: Koutliner 69

provided, type in the cell label, or when a mouse is available, simply double click with the
Action Key on the contents of a cell. The Koutliner knows to use the cell’s label in such
cases.

In the following commands, words delimited with <> represent the arguments for which
each command prompts. Note how the use of prefix arguments changes each command’s
behavior from insertion at the sibling level to insertion at the child level.

{M-<down>}
Move current tree past prefix arg same level trees.

{M-<up>} Move current tree back prefix arg same level trees.
{C-c ¢} Copy <tree> to be the successor of <cell>.

{C-u C-c c}
Copy <tree> to follow as the first child of <cell>.

{C-c C-c} Copy <tree> to be the predecessor of <cell>.
{C-u C-c C-c}
Copy <tree> to be the first child of the parent of <cell>.

{C-c m} Move <tree> to be the successor of <cell>.

{C-u C-c m}
Move <tree> to follow as the first child of <cell>.

{C-c C-m} Move <tree> to precede <cell>.

{C-u C-c C-m}
Move <tree> to be the first child of the parent of <cell>.

If you have mouse support under Hyperbole, you can move entire trees with mouse clicks.
Click the Assist Key within the indentation to the left of a cell and you will be prompted
for a tree to move. Double click the Action Key within the contents of the root cell of the
tree to move and then double click within the root contents of the tree you want it to follow
as a Successor.

The Koutliner supports copying and moving within a single outline only right now, so
don’t try to to move trees across different outline files. You can, however, copy an outline
tree to a non-outline buffer with:

{C-c M-c} Copy a <tree> to a non-koutline buffer.
{C-c C-@} Copy a <tree> to an outgoing mail message.

You may also import cells into the current koutline from another koutline with the {M-x
kimport:text RET} command. See Section 9.5.8 [Inserting and Importing], page 71.

9.5.4 Moving Around

In addition to normal emacs movement commands, you can move within a cell or from one
cell or tree to another.

{C-c ,} Move to the beginning of the current cell.
{C-c .} Move to the end of the current cell.

Chapter 9: Koutliner 70

{C-c C-n} Move to the next visible cell, regardless of level.

{C-c C-p} Move to the previous visible cell, regardless of level.

{C-c C-£f} Move forward to this cell’s successor, if any.

{C-c C-b} Move backward to this cell’s predecessor, if any.

{C-c C-d} Move to the first child of the current cell, if any.

{C-c C-u} Move to the parent cell of the current cell, if any.

{C-c <} Move to the first sibling at the current level within this tree.
{C-c >} Move to the last sibling at the current level within this tree.
{C-c "} Move to the level 1 root cell of the current tree.

{C-c $} Move to the last cell in the tree rooted at point, regardless of level.
9.5.5 Filling

Filling is the process of distributing words among lines to extend short lines and to reduce
long ones. Commands are provided to fill a paragraph within a cell or to fill a whole cell,
which may have multiple paragraphs.

{M-q} or {M-j} refills a paragraph within a cell so that its lines wrap within the current
margin settings. {C-c M-q} or {C-c M-j} refills all paragraphs within a cell. {C-M-q} or
{C-M-j} refills all cells within a tree. See the GNU Emacs manual for information on how
to set the left and right margins.

Set the variable, kot1-mode:refill-flag, to ‘t’ if you want moving, promoting, demot-
ing, exchanging, splitting and appending cells to also automatically refill each cell, aside
from any that have a ‘no-fill’ property. Generally, this is not recommended since if you
happen to move a cell that you carefully formatted yet forgot to give a ‘no-fill’ property,
then your formatting will be lost.

9.5.6 Transposing

The Koutliner move and copy commands rearrange entire trees. The following two com-
mands, in contrast, exchange the locations of two individual cells.

{C-c e} prompts for two cell addresses and exchanges the cell locations.

{C-c t} does not prompt. It exchanges the current and immediately prior cell, regardless
of their levels. If there is no prior cell it exchanges the current and next cell.

{M-0 C-c t} exchanges the cells in which point and mark fall. {C-c t} with a non-zero

numeric prefix argument, N, moves the current tree maximally past the next N visible cells.
If there are fewer visible, it makes the current cell the last cell in the outline.

9.5.7 Splitting and Appending

One cell may be split into two adjacent sibling cells with {C-c s}. This leaves the cell
contents preceding point in the current cell, minus any trailing whitespace, and moves the
contents following point to a new sibling cell which is inserted into the outline. {C-u C-c s}
instead adds the new cell as the first child of the original cell, rather than as its successor.

All cell attributes in the original cell are propagated to the new one, aside from the
creation attributes and idstamp.

Chapter 9: Koutliner 71

{C-c +} appends the contents of a specified cell to the end of another cell. It has no
effect on cell attributes, except that if one cell has a ‘no-fill’ attribute, which prevents all
but user requested filling of a cell, then the cell appended to inherits this property. This
helps maintain any special formatting the appended text may have.

9.5.8 Imserting and Importing

The paragraphs of another buffer or file may be inserted into a koutline as a set of cells by
using the {C-x i} command. When prompted, you may use a buffer name or filename from
which to insert; completion is provided for filenames only.

The elements from the original buffer are converted into kecells and inserted as the suc-
cessors of the current cell. If {C-u C-x i} is used, they are instead inserted as the initial
children of the current cell.

For information on mode and suffix-specific conversions performed on file elements
before they are inserted, see the documentation for the variables, kimport:mode-alist
and kimport:suffix-alist. This same conversion process applies if you invoke {M-x
kotl-mode RET} in a non-koutline buffer or if you perform a generic file import as described
later in this section.

Use {M-x kimport:insert-file-contents RET} to insert an entire file into the current
cell following point.

The outliner supports conversion of three types of files into koutline files. You can
import a file into an existing koutline, following the tree at point, or can create a new
koutline from the imported file contents. {C-h h k £ £} or {M-x kimport:file RET} selects
the importation type based on the buffer or filename suffix of the file to import.

If you want to convert a buffer from some other mode into a koutline and then want to
save the converted buffer back to its original file, thereby replacing the original format, use
{M-x kotl-mode RET}. Remember that you will lose the old format of the buffer when you
do this.

Use one of the following commands when you need explicit control over the type of
importation used on some text. With these commands, your original file remains intact.

Use {M-x kimport:text RET} and you will be prompted for a text buffer or file to import
and the new koutline buffer or file to create from its text. Each paragraph will be imported
as a separate cell, with all imported cells at the same level, since indentation of paragraphs
is presently ignored. This same command can be used to import the contents, attributes
and level structure of cells from another koutline.

Star outlines are standard emacs outlines where each entry begins with one or more
asterisk characters. Use {M-x kimport:star-outline RET} and you will be prompted for
the star outline buffer or file to import and the new koutline buffer or file to create.

(Skip this if you are unfamiliar with the Augment/NLS system originally created at
SRI.) Files exported from the Augment system as text often have alphanumeric statement
identifiers on the right side. You can import such files while maintaining their outline
structure. Use {M-x kimport:aug-post-outline RET} and you will be prompted for the
Augment buffer or file to import and the koutline to create. See https://dougengelbart.
org/content/view/148/ for more information.

https://dougengelbart.org/content/view/148/
https://dougengelbart.org/content/view/148/

Chapter 9: Koutliner 72

9.5.9 Exporting

Koutlines may be exported to other file formats. Presently, the only format supported
is conversion to HTML for publishing on the World-Wide Web. Use the Kotl/Format
minibuffer menu, {C-h h k £}, for this.

{C-hh k £ d} or {M-x kexport:display RET} exports the current Koutline buffer to
a temporary HTML file and displays the file in the web browser given by browse-url-
browser-function. Any tree in the HTML outline may be expanded or collapsed by
clicking the left mouse button on its root cell, for ease of viewing.

Alternatively, {C-h h k f h} or {M-x kexport:html RET} prompts for the koutline buffer
or file to export, the HTML file or buffer to which to output, and the title to use for the
HTML file. Completion of filenames is provided. The conversion will then be done and the
output file or buffer will be written; the output file will not be displayed. You must display
it manually, if desired.

{C-h h k f k} or {M-x kexport:koutline RET} exports the current Koutline buffer to
a .html file of the same name. The output file will not be displayed; you must display it
manually, if desired.

9.6 Viewing Outlines

The Koutliner has very flexible viewing facilities to allow you to effectively browse and
study large amounts of material.

9.6.1 Hiding and Showing

Individual cells, branches, or particular levels in the outline may be hidden or shown. These
commands work even when an outline buffer is read-only, e.g. when its file is not checked
out of a version control system yet, so that you can get effective views of an outline without
editing it. Some of these commands affect the current view spec. See Section 9.6.2 [View
Specs|, page 73.

Here are the major commands for showing and hiding Koutline cells.
{C-c C-h} Hide (collapse) the tree rooted at point.
{C-c C-s} Show (expand) the tree rooted at point.

{C-c C-a} Show (expand) all of the cells in the outline. With a prefix arg, also toggle the
display of blank lines between cells.

{C-x $} Show all of the cells down to a particular <level>. You are prompted for the
level or a prefix argument may be given.

{C-M-h} Hide the subtree at point, excluding the root cell.

{M-x kotl-mode:show-subtree}
Show the subtree at point. Use {C-c C-s} to achieve a similar effect; the only
difference is that it will additionally expand the root cell.

{C-c C-0} Show an overview of the outline by showing only the first line of every cell.
With a prefix arg, also toggle the display of blank lines between cells.

Chapter 9: Koutliner 73

{C-c C-t} Show a top-level view of the outline by hiding all cells but those at level 1 and
collapsing the visible cells so that only their first lines are visible. With a prefix
arg, also toggle the display of blank lines between cells.

A click or a press of the Action Key within a cell’s body, but not on a Hyperbole button,
toggles between hiding and showing the tree rooted at point. Try it with either your mouse
or with {M-RET}.

9.6.2 View Specs

View specifications (view specs, for short) are short codes used to control the view of a
koutline. The view specs in effect for an outline are always displayed in the modeline of the
outline’s window, following the outline buffer name, unless the variable, kvspec:string, has
been set to ‘nil’ to disable view spec display. The modeline display appears as <|viewspec>
to aid rapid visual location. The | (pipe character) is also used in links that specify view
specs to indicate the start of a view spec sequence. See Section 9.7 [Klinks|, page 74.

The current view spec is saved whenever the outline is saved. The next time the outline
is read in, the same view spec will be applied.

The rest of this section documents the view spec characters that are presently supported
and explains how to invoke a view spec. There is no user-level means of adding your own
view spec characters, so all other character codes are reserved for future use.

{C-c C-v} prompts for a new view spec setting in which the following codes are valid.
Any invalid characters in a view spec are ignored. Characters are evaluated in an order
meant to do the right thing, even when you use conflicting view spec characters. The
standard initial view spec is <|ben>.

a Show all cell levels and all lines in cells.

b Turn on blank lines between cells. Without this character, blank lines will be
turned off. You may also use the {C-c b} key binding to toggle blank lines on
and off independently of any other view settings.

cN Hide any lines greater than N in each cell. 0 means don’t cutoff any lines.

e Show ellipses when some content of a cell or its subtree is hidden. This cannot
be turned off.

1N Hide cells at levels deeper than N. 0 means don’t hide any cells.

n Turn on the default label type, as given by the variable, kview:default-label-
type. Normally, this is alphanumeric labels.

n0 Display idstamps, e.g. 086.

nl Display alpha labels, e.g. 1d3

n. Display legal labels, e.g. 1.4.3

As a test, use {C-h h k e} to display the example koutline. Then use {C-c C-v} to set
a view spec of ‘c211’. This will turn off blank lines, clip each cell after its second line, and
hide all cells below level one.

Chapter 9: Koutliner 74

9.7 Klinks

Cells may include hyperlinks that refer to other cells or to external sources of information.
Explicit Hyperbole buttons may be created as usual with mouse drags (see Section 4.7.1.3
[By Dragging], page 43). Implicit Hyperbole buttons may be added to Koutline text as
well. A klink is a special implicit link button, delimited by <> separators, that jumps to
a koutline cell and may also adjust the current outline viewspecs. This section discusses
klinks.

There are three forms of klinks:

internal ‘<#2b=06>" is an internal klink, since it refers to the koutline in which it is
embedded. When activated, it jumps to the cell within the current outline
which has permanent id ‘06’ and relative id ‘2b’. ‘<#06>’ does the same thing,
as does ‘<#2b>’, though this latter form will not maintain the link properly
if the cell is moved elsewhere within the outline. The form, ‘<#2b=06|ben>’
additionally sets the view spec of the current outline back to the default value,
with a blank line between each cell and the whole outline visible.

external The second klink format is an external link to another koutline, such as,
‘<EXAMPLE.kot1l#3=012|cle>’, which displays the named file, starting at the
cell 3 (whose permanent identifier is 012), with the view specification of: blank
lines turned off, cutoff after one line per cell, and showing ellipses for cells or
trees which are collapsed.

view spec The third format sets a view spec for the current koutline. For example,
‘<|ben>’, when activated, sets the view in the current outline to display blank
lines, to use ellipses after collapsed lines and to label cells with the alphanumeric
style.

Press the Action Key over a klink to follow it. This will flash the klink as a button and
then will display its referent in the other window. If the klink contains a view spec, it will
be applied when the referent is displayed.

There are a number of easy ways to insert klinks into koutlines. If you have mouse
support under Hyperbole, simply click the Action Key within the indentation to the left of
a cell text. If you then double click on some cell, a link to that cell will be inserted where
you started. From a keyboard, use {C-c 1} when in a koutline or {C-h h k 1} when not in
a koutline to insert a klink. Since klinks are implicit buttons, you may instead type in the
text of the klink just as you saw them in the examples above and they will work exactly as
if they had been entered with the insert link command.

If you prefer the standard copy and yank model that Emacs provides, place point within
a klink when there is no active region and use {M-w} to copy the klink. To instead copy
a reference to the current Koutline cell, use {M-w} outside of a klink when no region is
active or {M-x kotl-mode:copy-absolute-klink-to-kill-ring RET} anywhere within a
cell. Then {C-y} will yank the last copied text into any buffer you desire. Of course, when
a region is active, {M-w} will copy the region as it does normally in Emacs.

Similarly, you can copy to an Emacs register rather than to the kill ring. When no
region is active/highlighted, {C-x r s} prompts for an Emacs register and saves to it ei-
ther the current klink or, when outside of a klink, a reference to the current cell. {M-x

Chapter 9: Koutliner 75

kotl-mode:copy-absolute-klink-to-register RET} anywhere within a cell saves a ref-
erence to the current cell to a register.

{C-x r i} with the same register then inserts at point the Koutline reference previously
saved. When a region is active, these operate on the region instead.

There are also commands without any builtin key bindings that always copy a klink
reference to the current cell:

kotl-mode:copy-absolute-klink-to-kill-ring
kotl-mode:copy-relative-klink-to-kill-ring
kotl-mode:copy-absolute-klink-to-register
kotl-mode:copy-relative-klink-to-register

Because klinks use a very generic syntax, surrounded by <angle brackets>, in certain
modes, mostly C-based programming modes, certain non-klink syntax can be mistakenly
identified as klinks. Therefore, the Koutliner provides two customizable variables which dis-
able klink recognition in selected major modes, klink:ignore-modes and klink:c-style-
modes. Add a mode to one of these if you find any syntax that improperly registers as a
klink.

klink:ignore-modes is for non-programming modes, as Hyperbole ensures that within
all programming major modes, klinks are recognized only when point is within a comment.

klink:c-style-modes is rarely needed but is there if Hyperbole ever mistakenly recog-
nizes a pattern within a comment as a klink when it isn’t.

9.8 Cell Attributes

Attributes are named properties whose values are specific to an outline cell. Thus, each cell,
including the invisible 0 root cell, has its own attribute list. Every cell has three standard
attributes:

idstamp The permanent id of the cell, typically used in cross-file hyperlinks that reference
the cell, this is a whole number that starts from 0, which is always the hidden
root cell of the outline tree.

creator The e-mail address of the person who created this cell.

create-time
The time at which the cell was created. This is stored in a form that allows
for easy data comparisons but is displayed in a human readable format, such
as ‘Jan 28 18:27:59 CST 2021’.

{C-c C-i} adds, modifies or removes an attribute from a cell. The prefix argument given
to this command determines what it does.

{C-c C-i} sets an attribute of the cell at point; setting an attribute’s value to ‘nil’ is the
same as removing it.

{C-u C-c C-i}
removes an attribute of the cell at point

{C-0 C-c C-i}
sets an attribute of the invisible 0 root cell

Chapter 9: Koutliner 76

{C--1 C-c C-i}
removes an attribute of the invisible 0 root cell

The ‘no-fill’ attribute is special. When set to ‘t’, it prevents movement, promotion,
demotion, exchange, split or append commands from refilling the cell, even if the variable,
kotl-mode:refill-flag, is set to ‘t’. It does not prevent you from invoking explicit
commands that refill the cell. See Section 9.5.5 [Filling], page 70.

{C-c h} prompts for a cell label and displays the cell’s attributes. {C-u C-c h} prompts
for a cell label and displays the attributes for it and its subtree; use 0 as the kcell id to see
attributes for all visible cells in the outline.

9.9 Koutliner History

Much of the Hyperbole outliner design is based upon concepts pioneered in the Aug-
ment/NLS system, [Eng84al. Augment treated documents as a hierarchical set of nodes,
called statements, rather than cells. Every Augment document utilized this intrinsic struc-
ture.

The system could rapidly change the view of a document by collapsing, expanding, gen-
erating, clipping, filtering, including or reordering these nodes. It could also map individual
views to multiple workstation displays across a network to aid in distributed, collaborative
work.

These facilities aided greatly in idea structuring, cross-referencing, and knowledge trans-

fer. The Koutliner is a start at bringing these capabilities back into the mainstream of
modern computing culture.

7

10 HyRolo

Hyperbole includes HyRolo, a complete, advanced system for convenient management of hi-
erarchical, record-oriented information. Most often this is used for contact management but
it can quickly be adapted to most any record-oriented lookup task requiring fast retrieval.
There is also a Python-based command-line version, hyrolo.py, included.

Hyperbole buttons may be included within rolo records and then manually activated
whenever their records are retrieved in a search.

The following subsections explain use and basic customization of this tool.

10.1 HyRolo Concepts

HyRolo manages and searches a list of rolo files stored in the hyrolo-file-list custom
option. A rolo file consists of an optional header that starts and ends with a line of equal
signs (at least three equal signs starting at the beginning of a line), followed by zero or more
rolo records which we call entries.

The first file in the list should be a user-specific hyrolo file, typically in the home directory
and must have a suffix of either .org (Org mode) or .otl (Emacs Outline mode). Other files
in the list may use suffixes of .org, .otl, .md (Markdown mode) or .kotl (Koutline mode).

HyRolo entries begin with a delimiter of one or more special characters followed by
another space. Delimiters vary based on the type of file, for example level 3 entry delimiters
look like this:

Emacs Outline Mode: *x*x*

Koutline Mode: 1b3 or 1.2.3
Markdown Mode: #it#
Org Mode: *%ok

Entries may be arranged in a hierarchy, where child entries start with at least one more
delimiter characters than do their parents. Top-level entries use either a single delimiter
character or a sequence of digits in the case of Koutlines.

Beyond this initial delimiter, entries are completely free-form text. It is best to use a
"lastname, firstname" format, however, when adding contact entries into the first HyRolo
file in your list. Then HyRolo will automatically keep your entries alphabetized as you add
them; HyRolo can also sort the entries if you ever need. HyRolo will use this ordering if
you accept the default entry with which it prompts you when adding a new entry.

Here is an example of a simple HyRolo file. The date at the end is automatically added by
HyRolo whenever a new record is added, unless hyrolo-date-format is set to the empty
string.

PERSONAL ROLO
<Last-Name>, <First> <Email> W<Work#> F<Fax#>

* Smith, John <js@hiho.com> W708-555-2001 F708-321-1492
Chief Ether Maintainer, HiHo Industries
05/24/2020

Chapter 10: HyRolo 78

Any search done on the rolo scans the full text of each entry. During a search, the rolo
file header separator lines and anything in between are appended to the buffer of matched
entries before any entries are retrieved from the file. Whenever an entry is matched, it
and all of its descendant entries are retrieved. If your emacs version supports textual
highlighting, each search match is highlighted for quick, visual location.

For example, a search on "Company" could retrieve the following:

COMPANY ROLO

* Company
*ok Manager
*okk Staffer

Thus, searching for Company retrieves all listed employees. Searching for Manager turns
up all Staffer entries.

10.2 Rolo Menu

The Rolo submenu of the Hyperbole menu offers a full set of commands for searching and
maintaining a personal address book. It looks like so.

Manual
Remowve-This-Menu

Add-Entry
Celete-Entry
Display-Prior-Matches
Edit-Entry

Edit-Rolo
Insert-Entry-at-Point
Mail-to-Address
Search-for-Regexp
Search-for-5tring
Search-for-Word

Sort-Entries

Image 10.1: HyRolo Menu

Chapter 10: HyRolo 79

The Rolo/ menu entry on the Hyperbole minibuffer menu provides the same set of
commands as the menubar Rolo menu but with more concise labels.

The minibuffer Rolo/ menu offers the following commands (ConsultFind and HelmFind
appear only when the Consult and Helm packages are installed prior to loading Hyperbole.
They are especially noteworthy as they allow for fast line-level searching across many files
with interactive search pattern narrowing):

Menu Item Command Description
Add hyrolo-add Adds a hyrolo entry
ConsultFind hyrolo-consult-grep Interactively narrow grep matches]
Display hyrolo-display-matches Displays last matches again
Edit hyrolo-edit Edits an existing hyrolo entry
File hyrolo-find-file Edits a hyrolo-file-list file
Info id-info Displays a hyrolo manual entry
Kill hyrolo-kill Deletes a hyrolo entry
Mail hyrolo-mail Mails to an address at point
Order hyrolo-sort Sorts all hyrolo levels
RegexFind hyrolo-grep Finds all entries containing

a regular expression
StringFind hyrolo-fgrep Finds all entries containing

a string (or logical

expression)
TagFind hyrolo-tags-view Finds HyWiki Org tags
WordFind hyrolo-word Finds all entries containing

a string of whole words
Yank hyrolo-yank Inserts the first matching

hyrolo entry at point

The ’File’ menu item displays and edits the first file listed in hyrolo-file-1list unless
given a prefix argument, in which case it prompts with completion for the file to edit.

A prefix argument used with any of the above menu items that have 'Find’ in their
names limits the search to a maximum number of matches given by the argument. The
search is terminated whenever that number of matches is found.

With any of the above commands that prompt for a HyRolo name, such as Edit or Add
(not the Find commands), you may use the form parent/child to locate a child entry below
a specific parent. Hence, for a HyRolo which looks like so:

* Company
*ok Manager
*okok Staffer

you can refer to the Staffer entry with the following hierarchical notation, Com-
pany/Manager/Staffer. This hierarchical notation is not used in search expressions since
they search the entire HyRolo anyway. Thus, "Staffer" as a search pattern will find an
entry containing "Staffer" at any level in a hierarchy, like so:

%ok k Staffer

Chapter 10: HyRolo 80

10.3 HyRolo Searching

See Section 10.2 [HyRolo Menu], page 78, for the list of HyRolo search commands. In this
section, the menu item names from the minibuffer menu are used to refer to each command.

The RegexFind menu item searches the rolo list for all entries which contain matches for
a given regular expression. The regular expression syntax used is the same as the one used
within Emacs and across the GNU set of tools. See Section “Syntax of Regular Expressions”
in the GNU Emacs Manual, for full documentation on this format.

The TagFind menu item searches through HyRolo Org files and finds headlines with any
matching tags. An Action Key press on any matching line displays the line in its source
buffer.

The WordFind menu item locates full-word matches so that if you search for ‘product’,
it won’t match to occurrences of ‘production’. It is also handy for more precise name
matching.

The StringFind menu item has two uses. It can find all entry matches for a string
or can execute logical queries for more precise matching. The format of logical queries
is explained here; a simple parenthesis delimited prefix format is used with the following
logical operators.

Operator Name Num of Args Description

and two or more Match entries with all str args

or two or more Match entries with any str args

xor two or more Match entries with exactly 1 str arg
not one Match entries without the str arg
r-and two or more Match entries with all regexp args

r-or two or more Match entries with any regexp args
r-xor two or more Match entries with exactly 1 regexp arg
r-not one Match entries without the regexp arg

For example:
(and Company (not Vice-President))

would match those entries for people associated with ‘Company’ who do not have
‘Vice-President’ titles.

The following example would provide a list of all people marked as clients whose area
codes are outside of 408 and all non-clients within the 408 area code. This could be useful
after all clients within the 408 area code have been contacted and you want to see who else
you should contact.

(xor client 408-)

When using the regular expression operators, your operands are sent as regular expres-
sions without the need to quote single words or special regular expression characters like
" and ’7’. Use double quote marks to include a phrase or multi-word regular expression
pattern to match. For example:

(r-and HyRolo "Red Buttons?")

Chapter 10: HyRolo 81

would match entries that contain both "HyRolo" and either "Red Button" or "Red But-
tons".

10.4 HyRolo Keys

After a rolo search is performed, point is left in the rolo match buffer, *HyRolo*, which uses
hyrolo-mode to simplify browsing many HyRolo matches. Press {7} when in the match
buffer for a summary of available keys, all of which are documented in this section.

If your HyRolo search did not match what you want, use {r} to start a new regular
expression query or {C-u r} for a string query. The rest of the match buffer keys work with
the search results currently displayed.

If your emacs version supports textual highlighting, each search match is highlighted
for quick, visual location. {TAB} moves point forward to successive spans of text which
match the search expression. If the matching text is hidden/invisible, it is shown; the
body of the entry with the match, as well as all of its sub-entries are shown. {M-TAB} or
{SHIFT-TAB} move point backward to earlier matches. These keys allow you to quickly find
the matching entry of most interest to you if your search expression failed to narrow the
matches sufficiently.

To extend the match expression with some more characters to find a particular entry,
use {M-s}. This performs an interactive search forward for the match expression. You may
add to or delete characters from this expression to find different occurrences or move to the
next match with {C-s}. {C-r} reverses the direction of the search.

To search for a specific entry name in the match buffer, use {1} to interactively locate
the text immediately following the entry start delimiter, typically one or more asterisks.
This lets you find entries by last name quickly, eliminating other matches. Standard string,
{C-s}, and regular expression, {C-M-s}, interactive search commands are also available
within the rolo match buffer.

Single key outlining commands are also available for browsing matches. If your search
matches a large number of entries, use {t} to get a top-level summary of entries. Only the
first line of each first-level match is shown. If you want to see an overview of all the levels,
use {o} which shows the first line of every entry level. If you want an overview of just the
first two levels, {C-u 2 o} will work.

Press {s} to show (expand) the entry at point if it is hidden (collapsed). If point is on
a file header, this will expand the header and show the entire set of matched entries for
the file. The {h} does the reverse and hides entries. Within file headers it hides the file
from the end of the current line forward, so you can leave parts of the header displayed, if
desired. Press {a} to expand all entries in the buffer across all matched files.

If an entry is collapsed/hidden, moving to any hidden part auto-expands it. Use {h}, the
hide entry subtree to hide it again, if desired; this leaves point at the beginning of the entry
(does not apply in file headers) to facilitate further use of movement by entry commands.

Other keys are defined to help you work with matching entries.
{b} Move to the previous entry at the same level as the current entry.
{£} Move to the next entry at the same level as the current entry.

{n} Move to the next entry at any level.

Chapter 10: HyRolo 82

{p} Move to the previous entry at any level.

{u} Move to the previous higher entry one level up.

{,} Move to the beginning of the entry. With a prefix argument, move to the
beginning of highest ancestor level.

{.} Move to the end of the entry. With a prefix argument, move to the end of the
entire subtree.

{0} Move to previous file/buffer location header beginning with @Qloc>.

{13} Move to next file/buffer location header beginning with @loc>.

{<} Move to the beginning of the buffer.

{>} Move to the end of the buffer.

{DEL} Scroll backward a windowful.

{SPC} Scroll forward a windowful.

Use the {e} key to jump to and edit the current line in its original source file. If on a rolo
entry and it contains a datestamp at its end, update the datestamp, unless this feature has
been turned off via the Cust/Toggle-Rolo-Dates menu item. The variable, hyrolo-edit-
hook, performs this update. This allows programmed modification of the way rolo edits
work. The variable, hyrolo-add-hook, works the same way but is evaluated when a new
entry is first added. The format of the datestamp is specified by hyrolo-date-format.

Once you have found an entry of interest and you want to remove the rolo match buffer,
use {q} to quit. This will restore your current frame to its state prior to the rolo search.

10.5 HyRolo Settings

The files used in any rolo search are given by the hyrolo-file-1ist variable, whose default
value is typically "~/.rolo.otl", in which case, searches scan only your personal rolo file.
But you can customize this to include files with variables in them, wildcard patterns and
directories, as explained below. Any paths added to this list should be absolute.

If you include file wildcards in paths for this variable and find-file-wildcards is non-
nil (the default), then any files matching the pattern (which can include [char-matches] or
* wildcards and regular text) when the variable is set will be included in HyRolo searches.
For more on wildcards, see Section “Wildcards” in the GNU Emacs Manual.

If you include an Environment variable or Emacs Lisp variable with the ${var} format
in a path, they also are resolved when hyrolo-file-1list is set. Variables with values that
include multiple paths, e.g. PATH, are resolved to the first existing entry that matches.

If you include an existing directory (invalid ones are ignored) in your hyrolo-file-list,
HyRolo will expand it recursively across all of its files that match hyrolo-file-suffix-
regexp. By default, this is Org files (.org), Emacs outlines (.otl), Koutlines (.kotl), or
Markdown files (.md). See hpath.el#hpath:expand-list.

Once expanded, if a file in the list does not exist or is not readable, it is dropped. Paths
are searched in the order in which they appear in the list. You should leave your personal
rolo file as the first entry in the list, since this is the only file to which the HyRolo menu
Add command adds entries.

Chapter 10: HyRolo 83

Hyperbole releases earlier than 4.17 used a different filename for the personal rolo. If
such a file exists, you will be prompted to rename it whenever the HyRolo system is loaded.

If you want to have HyRolo search your directory of Org files, add the following to your
Fmacs initialization file:

(add-hook ’hyperbole-init-hook
(lambda ()
(require ’org)
(setq hyrolo-file-list (append (hyrolo-initialize-file-list)
(list org-directory)))))

If you use the Big Brother DataBase (BBDB) Emacs package to capture email addresses
and store contact information, the rolo automatically works with it. If the BBDB package
is loaded before HyRolo, then your bbdb-file of contacts is added as the second entry
in hyrolo-file-1list and will be searched automatically for any matches by the rolo find
commands. Presently there is no support for editing BBDB entries, just finding them.

For finding matches within only BBDB, there are the commands hyrolo-bbdb-fgrep
(string finding) and hyrolo-bbdb-grep (regular expression finding). They may be bound
to keys if desired.

If you use Google/Gmail Contacts, you can configure the HyRolo to query your Google
Contacts for matches. First you must download and install the external google-contacts
package using the Emacs Package Manager. Then you must install the non-Emacs GNU
Privacy Guard (GPG) package from https://gnupg.org so that the gpg or gpg2 executable
is in your command-line search path. Once these are in place, either restart Emacs or use
{M-x hyrolo-initialize-file-1list RET} to add Google Contacts to your searches.

When you next do a search, you will be prompted for your Google Contacts password
and may also have to enter an authorization code that will be displayed on your screen.
After authorization, your your information will be cached so that you are not prompted for
it again within this Emacs session.

For finding matches within only Google Contacts, there are the commands
hyrolo-google-contacts-fgrep (string finding) and hyrolo-google-contacts-grep
(regular expression finding). They may be bound to keys if desired.

If you ever need to disable Google Contacts usage, there is a flag, hyrolo-google-
contacts-flag, which when set to ‘nil’ disables searching of your Google Contacts.

Below are the rest of the settings available with HyRolo:

hyrolo-highlight-face
If textual highlighting is available in your emacs on your current display type,
the rolo uses the value of hyrolo-highlight-face as the face which highlights
search matches.

hyrolo-kill-buffers-after-use
HyRolo file buffers are left around after they are searched, on the assumption
that another search is likely to follow within this emacs session. You may
wish to change this behavior with the following setting: (setq hyrolo-kill-
buffers-after-use t).

https://gnupg.org

Chapter 10: HyRolo 84

hyrolo-save-buffers-after-use
After an entry is killed, the modified rolo file is automatically saved. If you
would rather always save files yourself, use this setting: (setq hyrolo-save-
buffers-after-use nil).

hyrolo-email-format
When an entry is being added from within a mail reader buffer, the rolo ex-
tracts the sender’s name and e-mail address and prompts you with the name
as a default. If you accept the default, it will enter the name and the email
address using the format given by the hyrolo-email-format variable. See its
documentation if you want to change its value.

hyrolo-hdr-regexp
A rolo file may begin with an optional header section which is copied to the
match display buffer whenever any matches are found during a search. The start
and end lines of this header are controlled by the regular expression variable,
hyrolo-hdr-regexp, whose default value is ""===". This allows lines of all
equal signs to visually separate matching entries retrieved from multiple files
during a single search.

hyrolo-hdr-and-entry-regexp
The rolo entry start delimiter is given by the regular expression variable,
hyrolo-hdr-and-entry-regexp, whose default value is "~*+", i.e. one or
more asterisks at the beginning of a line.

hyrolo-display-format-function

When a rolo search is done, each matching entry is passed through the func-
tion given by the variable, hyrolo-display-format-function, before it is dis-
played. This should be a function of one argument, namely the matching rolo
entry as a string. The string that this function returns is what is displayed
in the rolo match buffer. The default function used is identity which passes
the string through unchanged. If you use the rolo code to search other kinds of
record-oriented data, this variable can be used to format each entry however you
would like to see it displayed. With a little experience, you can quickly write
functions that use local bindings of the rolo entry and file settings to search
all kinds of record-oriented data. There is never a need to learn a complicated
query language.

85

11 Window Configurations

This chapter explains Hyperbole’s hywconfig.el library. It lets you save and restore win-
dow configurations, i.e. the layout of windows and buffers displayed within an emacs frame.
This is useful to save a particular working context and then to jump back to it at a later
time during an emacs session. It is also useful during demonstrations to display many in-
formational artifacts all at once, e.g. all of the windows for a particular subsystem. None of
this information is stored between emacs sessions, so your window configurations will last
through only a single session of use. Each window configuration is tied to the emacs frame
in which it is created.

The hywconfig library offers two independent ways of managing window configurations.
The first way associates a name with each stored window configuration. The name may then
be used to retrieve the window configuration later. The second way uses a ring structure to
save window configurations and then allows cycling through the ring of saved configurations,
finally wrapping around to the first entry after the last entry is encountered. Simply stop
when the desired configuration is displayed.

The Win/ menu entry on the Hyperbole top-level menu displays a menu of hywconfig
window configuration commands:

WinConfig> AddName DeleteName RestoreName PopRing SaveRing YankRing

The operations on this menu are defined as follows.

Menu Item Command Description

AddName hywconfig-add-by-name Name current wconfig
DeleteName hywconfig-delete-by—name Delete wconfig by name
RestoreName hywconfig-restore-by-name Restore wconfig by name
PopRing hywconfig-delete-pop Restore and delete wconfig
SaveRing hywconfig-ring-save Store wconfig to the ring
YankRing hywconfig-yank-pop Restore the next wconfig

The easiest method to save and restore window configurations shown here is by name,
but it requires that you type the chosen name. Instead, the ring commands permit saves
and restores using only the mouse. Since the ring commands are a bit more complex than
their by-name counterparts, the following paragraphs explain them in more detail.

HyWconfig creates a ring structure that operates just like the Emacs kill-ring (see
Section “Kill Ring” in the GNU Emacs Manual) but its elements are window configurations
rather than text regions. You can add an element to the ring to save the current window
configuration in the selected frame. After several elements are in the ring, you can walk
through all of them in sequence until the desired configuration is restored.

SaveRing executes the hywconfig-ring-save command which saves the current window
configuration to the ring.

YankRing executes the hywconfig-yank-pop command. It restores the window config-
uration currently pointed to within the ring. It does not delete this configuration from the
ring but it does move the pointer to the prior ring element. Repeated calls to this command

Chapter 11: Window Configurations 86

thus restore successive window configurations until the ring pointer wraps around. Simply
stop when a desired configuration appears and use {q} to quit from the minibuffer menu.

PopRing calls the hywconfig-delete-pop command. It is used to restore a previously
saved configuration and to delete it from the ring. Simply stop when a desired configuration
appears and use {q} to quit from the minibuffer menu.

The maximum number of elements the ring can hold is set by the hywconfig-ring-max
variable whose default is 10. Any saves beyond this value will delete the oldest element in
the ring before a new one is added.

87

12 Developing with Hyperbole

This chapter is for people who wish to customize Hyperbole, to extend it, or to develop
other systems using Hyperbole as a base. Most of it requires a basic level of familiarity
with Emacs Lisp, though new implicit button types may be created with knowledge of only
Emacs regular expressions.

12.1 Hook Variables

Hyperbole supplies a number of hook variables that allow you to adjust its basic operations
to meet your own needs, without requiring you to change the code for those operations.

We find it best to always set the value of hook variables either to ‘nil’ or to a list of
function names of no arguments, each of which will be called in sequence when the hook
is triggered. If you use the add-hook function to adjust the value of hooks, it will do this
automatically for you.

Given the name of a function, a Hyperbole hook variable triggered within that function
has the same name as the function with a ‘-hook’ appended. Hyperbole includes the
following hook variables:

hyperbole-init-hook
For customization at Hyperbole initialization time. Use this to load any per-
sonal Hyperbole type definitions or key bindings you might have. It is run after
Hyperbole support code is loaded but before Hyperbole is initialized, i.e. prior
to keyboard and mouse bindings.

action-key-depress-hook
assist-key-depress-hook
Run after an Action or Assist Mouse Key depress is detected.

action-key-release-hook

assist-key-release-hook
Run after an Action or Assist Mouse Key release is detected, before any asso-
ciated action is executed.

action-act-hook
Run before each Hyperbole button activation. The variable hbut:current
contains the button to be activated when this is run.

ebut-create-hook
Adds to the Hyperbole explicit button creation process.

ebut-delete-hook
Adds to the Hyperbole explicit button deletion process.

ebut-modify-hook
Executed when an explicit button’s attributes are modified.

hibtypes-begin-load-hook
Executed prior to loading of standard Hyperbole implicit button types. Used to
load site-specific low priority implicit button types since lowest priority ibtypes
are loaded first.

Chapter 12: Developing with Hyperbole 88

hibtypes—-end-load-hook
Executed after loading of standard Hyperbole implicit button types. Used
to load site-specific high priority implicit button types since highest priority
ibtypes are loaded last.

htype-create-hook
Executed whenever a Hyperbole type (e.g. action type or implicit button type)
is added to the environment.

htype-delete-hook
Executed whenever a type is deleted from the environment.

kotl-mode-hook
Executed whenever a koutline is created or read in or when kotl-mode is invoked.

hyrolo-add-hook
Executed after the addition of a new rolo entry.

hyrolo-display-hook
Executed when rolo matches are displayed.

hyrolo-edit-hook
Executed after point is successfully moved to an entry to be edited.

hyrolo-mode-hook
Executed when a rolo match buffer is created and put into hyrolo-mode.

hyrolo-yank-reformat-function
A variable whose value may be set to a function of two arguments, START and
END, which give the region of the rolo entry yanked into the current buffer
by the hyrolo-yank command. The function may reformat this region to meet
user-specific needs.

Hyperbole also makes use of a number of standard Emacs hook variables.
find-file-hook
This is called whenever a file is read into a buffer. Hyperbole uses it to highlight
any buttons within files.

write-file-hooks
This is called whenever a buffer is written to a file. Hyperbole uses it to save
modified button attributes associated with any file from the same directory as
the current file.

Hyperbole mail and news facilities also utilize a number of Emacs hook vari-
ables. These hide button data and highlight buttons if possible. See the Hy-
perbole files with ‘mail’ and ‘gnus’ in their names for specific usage of such
hooks.

12.2 Creating Types
To define or redefine a single Hyperbole type, you may either:

e move your Emacs point to within the type definition and use {C-M-x} (eval-defun)
(only works in Emacs Lisp mode);

Chapter 12: Developing with Hyperbole 89

e or move your point to the end of the last line of the type definition and use {C-x C-e}
(eval-last-sexp) (works in most modes).

The functions from the ‘htype’ class may be applied to any Hyperbole types, if needed.

The following subsections explain the specifics of Hyperbole type definitions which are
beyond standard practice for Emacs Lisp programming. See the definitions of the standard
types in hactypes.el and hibtypes.el for examples.

12.2.1 Creating Action Types

New forms of explicit buttons may be created by adding new action types to a Hyperbole
environment. The file, hactypes.el, contains many examples of working action types.

An action type is created, i.e. loaded into the Hyperbole environment, with the (defact)
function (which is an alias for (actype:create)). The calling signature for this function is
given in its documentation; it is the same as that of (defun) except that a documentation
string is required. An interactive calling form is also required if the action type has formal
parameters and is to be used in explicit or global button definitions. Implicit buttons never
use an action type’s interactive form; however, it is good practice to include an interactive
form since the type creator cannot know how users may choose to apply the type.

An action type’s parameters are used differently than those of a function being called.
Its interactive calling form is used to prompt for type-specific button attributes whenever
an explicit button is created. The rest of its body is used when a button with this action
type is activated. Then the button attributes together with the action type body are used
to form an action that is executed in response to the button activation. The action’s result
is returned to the action caller unless it returns ‘nil’, in which case ‘t’ is returned to the
caller to ensure that it registers the performance of the action.

An action type body may perform any computation that uses Emacs Lisp and Hyperbole
functions.

The interactive calling form for an action type is of the same form as that of a regular
Emacs Lisp function definition (see the documentation for the Emacs Lisp (interactive)
form or see Section “Code Characters for ’interactive”’ in the GNU Emacs Lisp Reference
Manual. It may additionally use Hyperbole command character extensions when the form
is given as a string. Each such extension character must be preceded by a plus sign, ‘+’, in
order to be recognized, since such characters may also have different standard interactive
meanings.

The present Hyperbole extension characters are:
+I Prompts with completion for an existing Info (filename)nodename.

+K Prompts for an existing kcell identifier, either a full outline level identifier or a
permanent idstamp.

+L Prompts for a klink specification. See the documentation for the function
(kcell-view:reference) for details of the format of a klink.

+M Prompts for a mail message date and the filename in which it resides. The mail
parameters prompted for by this character code may change in the future.

+V Prompts for a Koutliner view specification string, with the current view spec,
if any, as a default.

Chapter 12: Developing with Hyperbole 90

+X Prompts with completion for an existing Info index (filename)itemname.

Arguments are read by the functions in Hyperbole’s hargs class, rather than the standard
Lisp read functions, in order to allow direct selection of arguments via the Action Key.

If an action type create is successful, the symbol that Hyperbole uses internally to
reference the type is returned. On failure, ‘nil’ is returned so that you may test whether
or not the operation succeeds.

Once you have defined an action type within your present Hyperbole environment, you
can create new explicit buttons which use it. There is no explicit button type beyond its
action type, so no other work is necessary.

Call (actype:delete) to remove an action type from a Hyperbole environment. It takes
a single parameter which should be the same type symbol used in the type definition call
(not the Hyperbole symbol returned by the call).

12.2.2 Creating Implicit Button Types

Implicit buttons leverage the same action types used by explicit and global buttons but each
carries an additional implicit button type that defines the contexts in which it is active,
e.g. major modes or surrounding text. Once an implicit button type definition is loaded
into Hyperbole, the Action and Assist Keys automatically recognize all buttons of that
type. The Action Key activates the buttons and the Assist Key summarizes their behavior
and attributes. With a single definition, you can bring your text to life, activating implicit
hyperbuttons in thousands of documents with no other effort.

There are three ways to create new implicit button types; the first two are meant to
allow non-programmers to extend Hyperbole with simplified types.

Action Button Link Types
The first is very simple but can create only link buttons with a specific textual
form, i.e. <action-type button-text>.

Implicit Button Link Types
The second is also limited to link buttons and requires regular expression knowl-
edge; it allows for any string or regular expression button delimiters and regular
expression or function link specifications.

Programmatic Implicit Button Types
The third requires ELisp programming knowledge but can create any implicit
button type.

The sections below examine these three implicit button type creation techniques.

12.2.2.1 Action Button Link Types
The simplest way to create a new implicit link type (from which any number of buttons
can be recognized within text) is to create an action button link type.
A call to the defal macro of the form:
(defal TYPE LINK-EXPR &optional DOC)

will create a Hyperbole action button link TYPE (an unquoted symbol) whose buttons
always take the form of: <TYPE link-text> where link-text is substituted into LINK-
EXPR as grouping 1 (wherever %s or \\1 is found) to form the link referent that is displayed

Chapter 12: Developing with Hyperbole 91

for each button. Hyperbole automatically creates a doc string for the type but you can
override this by providing an optional DOC string.

When the Action Key is pressed in a buffer between the start and end delimiters and
the text in-between matches to TEXT-REGEXP, then the button is activated and does one
of four things with LINK-EXPR:

1. executes it as a brace-delimited key series;
2. displays it in a web browser as a URL;
3. displays it as a path (possibly with trailing colon-separated line and column numbers);
4. invokes a function or action type of one argument, the button text sans the function
name, to display it.
For example, if you use Python and have a ‘PYTHONPATH’ environment variable, then
pressing {C-x C-e} eval-last-sexp after this expression:
(defal pylib "${PYTHONPATH}/%s")
defines a new action button link type called ’pylib’ whose buttons take the form of:
<pylib PYTHON-LIBRARY-FILENAME>

and display the associated Python libraries (typically Python source files). Optional colon
separated line and column numbers may be given as well.

Therefore an Action Key press on:

<pylib string.py:5:7>
would display the source for string.py (wherever it is installed on your system) from the
Python standard library with point on the fifth line at the seventh character.

See Section 12.2.2.2 [Implicit Button Link Types|, page 91, for more flexible regular

expression-based link type creation. See Section 12.2.2.3 [Programmatic Implicit Button
Types], page 92, for the most general implicit button type creation.

12.2.2.2 Implicit Button Link Types

If you understand Emacs regular expressions (see Section “Syntax of Regular Expressions”
in the GNU Emacs Manual), you can create new implicit button types without understand-
ing how to program in Emacs Lisp, aside from the instructions provided here.

A call to the defil macro of the form:

(defil TYPE START-DELIM END-DELIM TEXT-REGEXP LINK-EXPR &optional
START-REGEXP-FLAG END-REGEXP-FLAG D0OC)

will create a new Hyperbole implicit button link TYPE (an unquoted symbol), recognized in
a buffer via START-DELIM and END-DELIM (strings) and the TEXT-REGEXP pattern
between the delimiters. With optional START-REGEXP-FLAG true, START-DELIM is
treated as a regular expression. Similarly, a true value of END-REGEXP-FLAG treats
END-DELIM as a regular expression. Hyperbole automatically creates a doc string for the
type but you can override this by providing an optional DOC string.

When the Action Key is pressed in a buffer between the start and end delimiters and
the text in-between matches to TEXT-REGEXP, then the button is activated and does one
of four things with LINK-EXPR:

1. executes it as a brace-delimited key series;

Chapter 12: Developing with Hyperbole 92

2. displays it in a web browser as a URL;
3. displays it as a path (possibly with trailing colon-separated line and column numbers);

4. invokes a function or action type of one argument, the button text (sans the function
name if an Action Button), to display it.

Prior to activation, for the first three kinds of LINK-EXPR, a replace-match is done
on the expression to generate the button-specific referent to display. Thus, either the whole
button text (‘\\&’) or any numbered grouping from TEXT-REGEXP, e.g. ‘\\1’, may be
referenced in the LINK-EXPR to form the link referent.

Here is a sample use case. Let’s create a button type whose buttons perform a grep-

like function over a current repo’s git log entries. The buttons use this format: [<text to
match>].

The following defines the button type called search-git-log with a a key series action
surrounded by braces:

(defil search-git-log "[<" ">]" " .x" "{M-: (hypb:fgrep-git-log \"\\&\")
RET}")
or this simpler version skips the explicit text substitution (\\\\&) and instead uses the
function that takes the button text as an argument:

(defil search-git-log "[<" ">]" ".*" # hypb:fgrep-git-log)

Place point after one of the above expressions and evaluate it with {C-x C-e} eval-last-
sexp to define the implicit button type. Then if you have cloned the Hyperbole repo and
are in a Hyperbole source buffer, an Action Key press on a button of the form:

;3 [<test release>]

will display one line per commit whose change set matches ’test release’. An Action Key
press on any such line will then display the commit changes.

If you don’t mind extra text for every button, you could instead use Action Buttons of
the form: <hypb:fgrep-git-log "string"> to do the same thing without any special definitions.

12.2.2.3 Programmatic Implicit Button Types

An implicit button type is defined or updated via the (defib) macro (ibtype:create is
alias for this). It may be called just as (defun) is, but with a number of constraints. The
parameter list should always be empty since no parameters will be used. A documentation
string is required. The last required form is the at-p predicate which when non-‘nil’, must
do three things:

1. determine if there is a button at point that matches the type being defined;
2. if so, call ibut:set-label to identify the label text of the button;
3. if so, call hact to invoke the button’s action, typically using the label.
The call to ibut:label-set may contain just the button’s label argument or the label
plus its start and end positions in the buffer, if you wnat the button to flash when pressed.

The hact call, run whenever a button of the type is activated, must be the last expression
within the at-p form unless the action itself ends with a call to hact. This call will always
return ‘t’ when the at-p form is tested for a boolean value since the implicit button type’s
check has already evaluated true before this is called. The arguments to the call to hact are

Chapter 12: Developing with Hyperbole 93

an action function and whatever arguments it takes. The action may be a Hyperbole action
type created with defact or a regular Emacs Lisp function. However, the action should not
return ‘nil’ since any ‘nil’ value returned is converted to ‘t’ to ensure the implicit button
checker recognizes that the action has been executed.

Action invocations have the form: (hact actype &rest actype-arguments) where
actype is a Hyperbole action type symbol or an Emacs Lisp function name or lambda;
actype-arguments are the arguments fed to the action invocation when an implicit button
of the type is activated.

It is imperative that all actions (non-predicate code) be invoked through the (hact)
function or your ibtypes will not work properly. (Hyperbole first tests to see if any ibtype
matches the current context before activating any type, so it ensures that (hact) calls are
disabled during this testing). Any action types used in the definition of an implicit button
type may be created before or after the definition, but obviously, must be defined before
any implicit buttons of the given type are activated or an error will result.

If an implicit button type create is successful, the symbol that Hyperbole uses internally
to reference the type is returned. On failure, ‘nil’ is returned so that you may test whether
or not the operation succeeds. Implicit button type names and action type names may be
the same without any conflict. In fact, such naming is encouraged when an implicit button
type is the exclusive user of an action type.

When the Action Key is pressed, each implicit button type predicate is checked in
priority order and the first one whose at-p form evaluates non-‘nil’ is activated (its action
is run using the button label at point). The first time an implicit button type is defined, it
becomes the highest priority type; repeated definitions of the same type update the type but
do not change its priority order. {C-h h i t RET} (hui:htype-help 'ibtypes 'no-sort)
displays the doc strings for all current implicit button types in descending priority order.

Call (ibtype:delete) to remove an implicit button type from a Hyperbole environment.
It takes a single parameter which should be the same type symbol used in the type definition
call (not the Hyperbole symbol returned by the call). This will not delete the action type
used by the implicit button; that must be done separately.

By default, a request for help on an implicit button will display the button’s attributes
in the same manner as is done for explicit buttons. For some implicit button types, other
forms of help will be more appropriate. If an Emacs Lisp function is defined whose name is
formed from the concatenation of the type name followed by ‘:help’, e.g. my—-ibtype:help,
it is used as the assist-action whenever the Assist Key is pressed, to respond to requests
for help on buttons of that type. Any such function should take a single argument of an
implicit button construct. (This is what (ibut:at-p) returns when point is within an
implicit button context). Remember that the standard help for buttons with custom help
functions is still available with {C-h A} for the Action Key and {C-u C-h A} for the Assist
Key.

To programmatically query implicit buttons for their attributes, use the functions from
the ‘hbut’ and ‘hattr’ classes. See the hib-kbd.el file for an example of a custom help
function.

12.3 Explicit Button Technicalities

Chapter 12: Developing with Hyperbole 94

12.3.1 Button Label Normalization

Hyperbole uses a normalized form of button labels called button keys (or label keys) for
all internal operations. See the documentation for the function (hbut:label-to-key) for
details of the normalization process. The normalized form permits Hyperbole to recognize
buttons that are the same but whose labels appear different from one another, due to text
formatting conventions. For example, all of the following would be recognized as the same
button.

<(fake button)> <(fake button)>

Pam> <(fake
Pam> button)>

;3 <(fake
5 button)>

/* <(fake x/
/* button)> */

The last three examples demonstrate how Hyperbole ignores common fill prefix patterns
that happen to fall within the middle of a button label that spans multiple lines. As long
as such buttons are selected with point at a location within the label’s first line, the button
will be recognized. The variable hbut:fill-prefix-regexps holds the list of fill prefixes
recognized when embedded within button labels. All such prefixes are recognized (one per
button label), regardless of the setting of the Emacs variable, fill-prefix, so no user
intervention is required.

12.3.2 Operational and Storage Formats

Hyperbole uses a terse format to store explicit buttons and a more meaningful one to
show users and to manipulate during editing. The terse format consists solely of button
attribute values whereas the edit format includes an attribute name with each attribute
value. A button in edit format consists of a Lisp symbol together with its attribute list
which holds the attribute names and values. In this way, buttons may be passed along from
function to function simply by passing the symbol to which the button is attached. Most
functions utilize the pre-defined hbut: current symbol by default to store and retrieve the
last encountered button in edit format.

The ‘hbdata’ class handles the terse, stored format. The ‘hbut’, ‘ebut’, and ‘ibut’ classes
work with the name/value format. This separation permits the wholesale replacement of
the storage manager with another, with any interface changes hidden from any Hyperbole
client programming.

12.3.3 Programmatic Button Creation

A common need when developing with Hyperbole is to create or to modify explicit buttons
without user interaction. For example, an application might require the addition of an
explicit summary button to a file for each new mail message a user reads that contains a
set of keywords. The user could then check the summary file and jump to desired messages
quickly.

Chapter 12: Developing with Hyperbole 95

The Hyperbole class ‘ebut’ supports programmatic access to explicit buttons. Examine
it within the hbut.el file for full details.

The simplest way to create explicit buttons programmatically is to call ebut:program.
This generates an explicit button at point from LABEL, ACTYPE (action type) and any
optional ACTYPE ARGS. It inserts the LABEL text at point surrounded by <()> delim-
iters, adding any necessary instance number of the button after the LABEL. ACTYPE may
be a Hyperbole action type name (from defact) or an Emacs Lisp function, followed by
a list of arguments for the actype, aside from the button LABEL which is automatically
provided as the first argument.

For interactive explicit creation, use hui:ebut-create instead.

The documentation for (ebut:create) explains the set of attributes necessary to create
an explicit button. For operations over the whole set of buttons within the visible (non-
narrowed) portion of a buffer, use the (ebut:map) function.

Similarly, gbut : ebut-program programmatically adds global explicit buttons at the end
of the personal button file.

12.4 Encapsulating Systems

A powerful use of implicit button types is to provide a Hyperbole-based interface to external
systems. The basic idea is to interpret patterns output by the application as implicit
buttons.

See the hsys-=* files for examples of how to do this. Encapsulations are provided for the
following systems (the systems themselves are not included with Hyperbole):

World-Wide Web
The world-wide web system originally developed at CERN, that now spans the
Internet universe. This is automatically loaded by Hyperbole so that a press of
the Action Key follows a URL.

12.5 Embedding Hyperbole

The standard Hyperbole user interface has purposely been separated from the Hyperbole
backend to support the development of alternative interfaces and the embedding of Hyper-
bole functionality within other system prototypes. The Hyperbole backend functionality
that system developers can make use of is called its Application Programming Interface
(API). The API may be used to make server-based calls to Hyperbole when Emacs is run
as a non-interactive (batch) process, with its input/output streams attached to another
process.

The public functions and variables from the following files may be considered the present
Hyperbole API:

hact.el, hargs.el, hbmap.el, hbut.el, hhist.el, hmail.el, hmoccur.el, hpath.el,
htz.el, hypb.el, hyrolo.el, hyrolo-logic.el, hywconfig.el and set.el.

Note when looking at these files, that they are divided into sections that separate one data
abstraction (class) from another. A line of dashes within a class separates public parts of
the class from the private parts that follow the line.

Chapter 12: Developing with Hyperbole 96

This API does not include the Hyperbole Koutliner, as it has been designed for inter-
active use, rather than programmatic extensibility. You are welcome, however, to study its
code, below the hyperbole-${hyperb:version}/kotl/ directory.

97

Appendix A Glossary

Concepts pertinent to operational usage of Hyperbole are defined here. See Section “Glos-

)

sary’

in the GNU Emacs Manual, if any emacs-related terms are unfamiliar to you.

Ace Window

Action

Emacs extension package that labels windows with letters and allows quick
keyboard selection or other operations on a specific window. Hyperbole extends
this with a number of additional commands like throw a buffer to a window or
replace a windows’s contents. See Section 3.7.5.5 [Keyboard Drags|, page 20.

An executable behavior associated with a Hyperbole button. Links are a specific
class of actions which display existing entities, such as files. See also Action

Type.

Action Button

Action Key

An implicit button that uses a universal button syntax delimited by <angle
brackets> to invoke any available Hyperbole action type or Emacs Lisp function.
Alternatively, if it is an Emacs Lisp variable name, its action is to display the
variable value.

See Smart Key.

Action Type

Activation

Argument

Assist Key

Attribute

Augment

Emacs Lisp commands that specify Hyperbole button behaviors. Action types
contain zero or more arguments which must be given values for each button
with which they are associated. An action type together with a set of values is
an action. Actype is a synonym for action type.

Internally, Hyperbole defines its own namespace for action types defined with
its defact macro by prefixing them with ibtypes::. Symbols with this prefix
are regular Emacs Lisp commands.

A request to a Hyperbole button to perform its action. Ordinarily the user
presses a key which selects and activates a button.

A button-specific value fed to a Hyperbole type specification when the button
is activated.

See Smart Key.

A named parameter slot associated with a category or type of Hyperbole button.
An attribute value is typically specific to a particular button instance.

The Augment system, originally named NLS, was a pioneering research and
production system aimed at augmenting human intellect and group knowledge
processing capabilities through integrated tools and organizational development
strategies. This approach led to the invention of much of interactive comput-
ing technology decades ahead of other efforts, including: the mouse, chord
keyboards, screen windows, true hypertext, outline processors, groupware, and
digitally signed documents. See Appendix I [References|, page 165, which cites

Appendix A: Glossary 98

several Douglas Engelbart papers on the subject. The Koutliner demonstrates
a few of the concepts pioneered in Augment.

Buffer An Emacs buffer is an editable or viewable text, possibly with special formatting
such as an outline or table. It may also be attached to a process, receiving and
updating its text as the process handles changing information.

Button A selectable Hyperbole construct which performs an action. A button consists
of a set of attributes that includes: a textual label, a category, a type and
zero or more arguments. Fzxplicit buttons also have creator, create time, last
modifier, and last modifier time attributes.

Buttons provide user gateways to information. Users see and interact with but-
ton labels; the rest of the button attributes are managed invisibly by Hyperbole
and displayed only in response to user queries.

Button Activation
See Activation.

Button Attributes
See Attributes.

Button Data
Lists of button attribute values explicitly saved and managed by Hyperbole.
One list for each button created by Hyperbole.

Button File, local
A per-directory file named HYPB that may be used to store any buttons that link
to files within the directory. It may be displayed via a menu selection whenever
a user is within the directory.

Button File, personal
A per-user file named HYPB that stores all global buttons for the user and any
other buttons used to navigate to other information spaces. It may be displayed
via a menu selection at any time.

Button Key
A normalized form of a button label used internally by Hyperbole.

Button Label
A text string that visually indicates a Hyperbole button location and that serves
as its name and unique identifier. Within a buffer, buttons with the same label
are considered separate views of the same button and so behave exactly alike.
Since button labels are simply text strings, they may be embedded within any
text to provide non-linear information or operational access points.

Button Selection
The act of designating a Hyperbole button upon which to operate. Use the
Action Key to select a button.

Category A class of Hyperbole buttons: implicit, explicit or global.
Cell See Kcell.

Children The set of koutline cells which share a common parent cell and thus, are one
level deeper than the parent.

Appendix A: Glossary 99

Class

Consult

Context

Display

Domain

Drag
Elink

link-to-ebut

A group of functions and variables with the same prefix in their names, used
to provide an interface to an internal or external Hyperbole abstraction.

An Emacs extension package that provides asynchronous search and narrow
wrappers around common search commands like grep, ripgrep, find and locate.

Hyperbole uses this package to provide convenience commands for interactive,
line-oriented searches.

{M-x hsys-org-roam-consult-grep RET}
Interactively searches Org Roam notes in org-roam-directory
with consult.

{M-x hsys-org-consult-grep RET}
Interactively searches Org notes in org-directory with consult.

A programmatic or positional state recognized by Hyperbole. We speak of
Smart Key and implicit button contexts. Both are typically defined in terms of
surrounding patterns within a buffer, but may be defined by arbitrary Emacs
Lisp predicates.

See Screen.

The contexts in which an implicit button type may be found, i.e. where its
predicate is true.

A mouse button press in one location and following release in another location.

An Action Button that links to an explicit button. It begins with <elink:
followed by an explicit button label, an optional ebut file and ends with a
closing >.

Environment

See Hyperbole Environment.

Explicit Button

Flymake

Frame

A button created and managed by Hyperbole, associated with a specific action
type. By default, explicit buttons are delimited like this ‘<(fake button)>’.
Direct selection is used to operate upon an explicit button.

Flymake is an Emacs library that lints your code in the background. It provides
flymake-minor-mode for source buffers and flymake-diagnostics-buffer-
mode for listing the linter issues for a given source buffer. Hyperbole extends
this library with Smart Key jump and display issue contexts as well as a key
map of commands in source buffers to support removal of flymake issues without
having to jump to the issue listing buffer.

An Emacs frame displays one or more Emacs windows and widgets (menubars,
toolbars, scrollbars). Under a graphical window system, this is a single window
system window. On a dumb terminal, only one frame is visible at a time as
each frame generally fills the whole terminal display, providing a virtual screen
capability. Emacs windows exist within a frame.

Appendix A: Glossary 100

Global Button

Glink

link-to-gbut

A Hyperbole button which is accessed by name rather than direct selection.
Global buttons are useful when one wants quick access to actions such as jump-
ing to common file locations or for performing sequences of operations. One
need not locate them since they are always available by name, with full comple-
tion offered. All global buttons are stored in the file returned by the function
call, (gbut:file), and may be activated with the Action Key when editing
this file. By default, this is the same as the user’s personal button file.

An Action Button that links to a global button. It begins with <glink: followed
by a global button label and then a closing >.

Global Button File

Grid

History

See Button File, personal and Global Button.
See Windows Grid.

The maximum length of a button label is limited by the variable hbut :max-len.
If 0, there is no limit and searches for button end delimiters can go as far as
the end of the buffer. Use the function, (hbut:max-len), to read the proper
value.

A Hyperbole menu command that moves back one step in Hyperbole hyperlink
traversal and restores the prior frame and window configuration.

Hook Variable

HyControl

HyNote

Hyperbole

A variable that permits customization of an existing function’s operation with-
out the need to edit the function’s code. See also the documentation for the
function (run-hooks).

HyControl, the Hyperbole window and frame control manager, offers fast, single
key manipulation of window and frame creation, deletion, sizing, position and
face zooming (enlarging/shrinking).

HyNote is a start on Hyperbole’s note taking system. It presently simply pro-
vides an experience similar to HyWiki, but for Org directory and Org Roam
file and headline links. See the documentation for the implicit button type it
defines, hynote-file.

HyNote supports Org, Markdown, Koutline and Emacs Outline file formats.
It uses UUIDs and HyRolo for quick note lookups across matching files in
hynote-directory-list.

In the future, it will also provide a universal way to easily link to information
across many file formats.

See also HyWiki.
The flexible, programmable information management and viewing system doc-

umented by this manual. It utilizes a button-action model and supports hyper-
textual linkages. Hyperbole is all things to all people.

Appendix A: Glossary 101

Hyperbole Environment
A programmatic context within which Hyperbole operates. This includes the
set of Hyperbole types defined and the set of Hyperbole code modules loaded.
It does not include the set of accessible buttons. Although the entire Emacs
environment is available to Hyperbole, we do not speak of this as part of the
Hyperbole environment.

Hypertext A text or group of texts which may be explored in a non-linear fashion through
associative linkages embedded throughout the text. Instead of simply referring
to other pieces of work, hypertext references when followed actually take you
to the works themselves.

HyRolo HyRolo, the Hyperbole record/contact manager, provides rapid lookup of multi-
line, hierarchically ordered free form text records. It can also lookup records
from Google/GMail Contacts and the Big Brother DataBase (BBDB) package.

HyWiki HyWiki, the Hyperbole personal wiki tool, lets you create a personal wiki of
interlinked Org files in a single directory, where each page name automatically
becomes a live HyWikiWord link back to the associated page whenever added
in any file within the HyWiki directory. HyWikiWords also work outside this
directory if you turn on the minor hywiki-mode in other buffers. A single
command, {C-u C-h h h p}, publishes/exports an entire HyWiki to HTML for
display on the web.

See the documentation for its implicit button types, hywiki-word and
hywiki-existing-word.

Iink

link-to-ibut
An Action Button that links to another implicit button. It begins with <ilink:
followed by an implicit button label, an optional ibut file and ends with a closing
>.

Implicit Button
A button recognized contextually by Hyperbole. Such buttons contain no
button data but may have an optional preceding label that looks like this:
‘<[1labell>’. See also implicit button type.

Implicit Button Type
A specification of how to recognize and activate implicit buttons of a specific
kind. Implicit button types often utilize structure internal to documents cre-
ated and managed by tools other than Hyperbole, for example, programming
documentation. Ibtype is a synonym for implicit button type. See also system
encapsulation.

Internally, Hyperbole defines its own namespace for ibtypes defined with its
defib macro by prefixing them with ibtypes::. Symbols with this prefix are
invokable Emacs Lisp functions.

InfoDock InfoDock is an older integrated productivity toolset for software engineers and
knowledge workers built atop XEmacs; it is no longer maintained or updated,
though many of its packages can be used with GNU Emacs. An older version
from 1999 may be found at infodock.sf.net.

Appendix A: Glossary 102

InfoDock has much of the power of GNU Emacs, but with an easier to use and
more comprehensive menu-based user interface. Most objections people raise
to using emacs have already been addressed in InfoDock. InfoDock is meant
for people who prefer a complete, pre-customized environment in one package.

Instance Number

Jedi

A colon prefaced number appended to the label of a newly created button when
the button’s label duplicates the label of an existing button in the current buffer.
This number makes the label unique and so allows any number of buttons with
the same base label within a single buffer.

See also https://tkf.github.io/emacs-jedi/latest/.

Jedi is a Emacs package for Python completion, definition and documentation
lookup.

Key Sequence

Key Series

Kcell Ref

Klink

Koutline

Koutliner

Kcell

A single sequence of keys that can invoke an Emacs command.

A series of one or more Emacs key sequences delimited by braces that Hyperbole
processes when activated as an implicit button, as if the keys were typed in by
the user.

A reference to a Koutline cell. Such a reference may be:
12 - a whole number representing a permanent idstamp
or any of the following string forms:

1 or 1b - relative id, augment style 1.2 - relative id, legal style 012 - permanent
idstamp 1a=012 - both relative and permanent ids (in that order) separated by
= |viewspec - a viewspec setting, rather than a cell reference

Optionally, any of these id forms (or the relative form) may be followed by zero
or more whitespace characters, a | and some view specification characters. See
Section 9.6.2 [View Specs|, page 73.

An angle bracket, <>, delimited implicit button type that displays a koutline
cell referent at the top of a window. The link may be of any of the following
forms:

< pathname [, kcell-ref] >

< [-'&] pathname >

< @ kcell-ref >
See the above definition of Kcell Ref for kcell-ref formats.

A hierarchically ordered grouping of cells which may be stored as a file and
viewed and edited as an outline.

Koutliner, the Hyperbole outliner, is a powerful autonumbering outliner with
permanent hypertext anchors for easy hyperlinking and view specs for rapid
outline view alteration.

Cells or kcells are elements within koutlines. Each cell may contain textual
and graphical contents, a relative identifier, a permanent identifier and a set of

https://tkf.github.io/emacs-jedi/latest/

Appendix A: Glossary 103

attributes such as the user who created the cell and the time of creation. See
also Koutliner.

Link A reference from a Hyperbole button to an existing (non-computed) entity. The
referenced entity is called a referent. Links are a subset of the types of actions
that Hyperbole buttons support.

Local Button File
See Button File, local.

Minibuffer Window
The one line window at the bottom of a frame where messages and prompts
are displayed.

Minibuffer Menu
A Hyperbole menu displayed in the minibuffer window. Each menu item within
a minibuffer menu begins with a different letter that can be used to invoke the
item (case doesn’t matter). Items that display other menus end with a forward

slash, ‘/’.

Mouse Key
Mouse Button
See Smart Key.

NLS See Augment.
Node See Link or Cell.

The OO-Browser
See also https://www.gnu.org/software/oo-browser.

The GNU OO-Browser is a multi-windowed, interactive object-oriented class
browser similar in use to the well-known Smalltalk browsers. It runs inside
Emacs. It is unique in a number of respects foremost of which is that it works
well with most major object-oriented languages in use today. You can switch
from browsing in one language to another in a few seconds. It provides both
textual views within an editor and graphical views under the X window system
and Windows. It includes support for C, C++, Common Lisp and its Object
System (CLOS), Eiffel, Java, Objective-C, Python and Smalltalk.

Hyperbole provides the mouse support for the OO-Browser, providing Smart
Keys that utilize the OO-Browser’s capabilities both when it is displayed on
screen and when editing code.

Org Mode A built-in Emacs mode for outlining, note taking and scientific publishing.
Hyperbole simplifies access to a number of its features and integrates its own
hypermedia capabilities with those of Org mode. Hyperbole can display the
referent of any Org Id. See Section E.2.2 [Smart Key - Org Mode], page 137.

Org Roam An Emacs extension package that inserts ids into Org mode files and indexes
them within a Sqlite database for rapid note taking and lookup by title. Hy-
perbole can display the referent of any Org Roam Id and provides full-text
searching of Org Roam nodes utilzing the interactive grep commands from the
Consult extension package.

https://www.gnu.org/software/oo-browser

Appendix A: Glossary 104

Outline
Parent

Predecessor

Predicate

Referent

See Koutline.

Any koutline cell which has children.

The previous same level koutline cell with the same parent.

A boolean (‘nil’ = false, non-nil = true = ‘t’) Lisp expression typically eval-
uated as part of a conditional expression. Implicit button types contain pred-
icates that determine whether or not a button of that type is to be found at
point.

See Link.

Remote Pathname

Rolo
Root Cell

Screen

Smart Key

A file or directory on a system not shared within the local area network.
The built-in Emacs library, Tramp, handles remote pathnames and
Hyperbole uses it to enable viewing and editing of remote paths of the
form: /<protocol>:<user>@<host>:<path> as well as web URLs. Use the
Cust/Find-File-URLs menu option to enable this feature.

See HyRolo.

A koutline cell which has cells below it at lower outline levels. All such cells
share the same root cell.

The total display area available to Emacs frames. This may consist of multiple
physical monitors arranged into a single virtual display. Screen edges are thus
the outer borders of the virtual display.

A context-sensitive key used within Hyperbole and beyond. There are two
Smart Keys, the Action Key and the Assist Key. The Action Key activates
Hyperbole buttons and scrolls the current buffer line to the top of the window
when pressed at the end of a line.

The Assist Key shows help for Hyperbole buttons and scrolls the current line
to the bottom of the window when pressed at the end of a line.

The {C-h h d s} Doc/SmartKeys menu item displays a full summary of Smart
Key capabilities. See Chapter 3 [Smart Keys|, page 11, for complete details.

Smart Menus

Smart Menus are an older in-buffer menu system that work on dumb terminals
and pre-dated Emacs’ own dumb terminal menu support. They are included
with InfoDock (which is no longer maintained) and are not available separately.
They are not a part of Hyperbole and are not necessary for its use but are still
supported by the Smart Keys.

Source Buffer / File

Subtree

The buffer or file within which a Hyperbole button is embedded.

All of the cells in a koutline which share the same root cell, excluding the root
cell.

Appendix A: Glossary 105

Successor

The next same level koutline cell which follows the current cell and shares the
same parent.

System Encapsulation

Tramp

Tree

URL

View

View Spec

Window

Use of Hyperbole to provide an improved or consistent user interface to another
system. Typically, implicit button types are defined to recognize and activate
button-type constructs managed by the other system.

A remote file access library built-in to Emacs. It uses secure transfer and
works with many types of hosts. It allows you to use remote pathnames
that are accessible via Internet protocols just like other pathnames, for
example when finding a file. Hyperbole recognizes pathnames of the form,
/<protocol>:<user>@<host>:<path> and web URLs.

The set of cells in a koutline that share a common root cell, including the root
cell.

A Universal Resource Locator specification used on the World-Wide web to
access documents and services via a multiplicity of protocols.

A perspective on some information. A view can affect the extent of the infor-
mation displayed, its format, modes used to operate on it, its display location
and so forth.

A terse string that specifies a particular view of a koutline or a link referent.
If a view spec is active for a buffer, the view spec appears within the modeline
like so, <|view spec>. See Section 9.6.2 [View Specs|, page 73.

An Emacs window displays a single Emacs buffer within a single frame. Frames
may contain many windows.

Windows Grid

A feature of HyControl invoked with {@} which creates, lays out and populates
a grid of a specified size of new Emacs windows, e.g. 4 rows by 3 columns, each
displaying a different buffer chosen by a set of user specifiable filters or from a
list.

106

Appendix B Setup

Hyperbole must be obtained and setup at your site before you can use it. Instructions are
given below. If you are using InfoDock version 4.0.7 or higher, Hyperbole is pre-installed so
you may skip the installation instructions and simply continue with the next section about
customizing Hyperbole’s behavior.

B.1 Installation

There are multiple package managers you can use to install Hyperbole once you have GNU
Emacs set up at your site. Choose one based on your needs.

After installing Hyperbole, read the next section on Invocation.

B.1.1 Elpa Stable Package Installation (Emacs Package Manager)

Once you have Emacs set up at your site, the stable, released version of GNU Hyperbole
may be installed by using the Emacs Package Manager. If you are not familiar with it,
see Section “Packages” in the GNU Emacs Manual. Releases are very rare and the in-
development branch may be many months and features ahead, so you may want to consider
using either the Elpa In-Development or Git In-Development installation instead.

If you have Hyperbole installed and simply want to upgrade it, invoke the Emacs Package
Manager with {M-x list-packages RET}, then use the {U} key followed by the {x} key to
upgrade all out-of-date packages, Hyperbole among them. Then skip the text below and
move on to the next section, see Section 2.1 [Invocation], page 9.

Otherwise, to download and install the Hyperbole package, you should add several lines
to your personal Emacs initialization file, ~/.emacs. (For further details, see Section “The
Emacs Initialization File” in the GNU Emacs Manual).

;; Below are the lines to add:

(when (< emacs-major-version 28)

(error "Hyperbole requires Emacs 28 or above, not %d"
emacs-major-version))

(require 'package)

(unless (package-installed-p 'hyperbole)
(package-refresh-contents)
(package-install 'hyperbole))

(hyperbole-mode 1)

Now save the file and restart Emacs. Hyperbole will then be downloaded and compiled
for use with your version of Emacs; give it a minute or two. You may see a bunch of
compilation warnings but these can be safely ignored.

B.1.2 Elpa In-Development Package Installation

The Elpa In-Development package pulls from the latest Hyperbole development branch tip
and does not require installation of any new package manager software. Since Hyperbole
is a mature package, this is usually fine to use and update on a day-to-day basis. But
new features are tested on this branch and once in awhile it may break for a short time
before a fix is pushed. With this branch you’ll be able to submit bug reports and feature

Appendix B: Setup 107

requests but will not be able to submit pull requests for changes to the developers; use the
Git In-Development Package instead for that.

If you have Hyperbole installed and simply want to upgrade it, invoke the Emacs Package
Manager with {M-x 1list-packages RET}, then use the {U} key followed by the {x} key to
upgrade all out-of-date packages, Hyperbole among them. Then skip the text below and
move on to the next section, see Section 2.1 [Invocation], page 9.

Otherwise, to download and install the Hyperbole package, you should add several lines
to your personal Emacs initialization file, ~/.emacs. (For further details, see Section “The
Emacs Initialization File” in the GNU Emacs Manual).

;; Below are the lines to add:

(when (< emacs-major-version 28)
(error "Hyperbole requires Emacs 28 or above, not %d"
emacs-major-version))
(require 'package)
(add-to-list 'package-archives
'("gnu-devel" . "https://elpa.gnu.org/devel/"))
(unless (package-installed-p 'hyperbole)
(package-refresh-contents)
(package-install 'hyperbole))
(hyperbole-mode 1)

Now save the file and restart Emacs. Hyperbole will then be downloaded and compiled
for use with your version of Emacs; give it a minute or two. You may see a bunch of
compilation warnings but these can be safely ignored.

B.1.3 Git In-Development Package Installation (Straight Package
Manager)

If you potentially want to contribute to Hyperbole development and send pull requests to
the Hyperbole development team or to try out new features still in testing, you can use the
Straight package manager. It pulls the latest Hyperbole source code directly from its git
repository. This also gives you a clean installation process without showing you any minor
byte compilation warnings.

If you have Hyperbole installed and simply want to upgrade it, invoke the Emacs Package
Manager with {M-x 1ist-packages RET}, then use the {U} key followed by the {x} key to
upgrade all out-of-date packages, Hyperbole among them. Then skip the text below and
move on to the next section, see Section 2.1 [Invocation], page 9.

Otherwise, to download and install the Hyperbole package, you should add several lines
to your personal Emacs initialization file, ~/.emacs. (For further details, see Section “The
Emacs Initialization File” in the GNU Emacs Manual).

Appendix B: Setup 108

;; Use this in your Emacs init file to install Straight
(progn
(when (< emacs-major-version 28)
(error "Hyperbole requires Emacs 28 or above, not %d"
emacs-major-version))
(defvar bootstrap-version)
(setq package-enable-at-startup nil)
(let ((bootstrap-file
(expand-file-name "straight/repos/straight.el/bootstrap.el"
user-emacs-directory))
(bootstrap-version 5))
(unless (file-exists-p bootstrap-file)
(with-current-buffer
(url-retrieve-synchronously
"https://raw.githubusercontent.com/raxod502/straight.el/develop/install.el"
'silent 'inhibit-cookies)
(goto-char (point-max))
(eval-print-last-sexp)))
(load bootstrap-file nil 'nomessage)))

;; Then use this to install Hyperbole
(straight-use-package
' (hyperbole
:host nil
:repo "https://git.savannah.gnu.org/git/hyperbole.git"
:config (hyperbole-mode 1)))

Now save the file and restart Emacs. Hyperbole will then be downloaded and compiled
for use with your version of Emacs; give it a minute or two.

B.1.4 Manual Tarball Archive Installation

If you are old-school, don’t like package managers, and prefer doing everything by hand,
then you can obtain Hyperbole from a tarball:

Download either:

1. a stable release tar.gz source archive from either:
ftp://ftp.gnu.org/gnu/hyperbole/ or http://ftpmirror.gnu.org/
hyperbole/, which will find the closest mirror of the GNU ftp site and show it
to you.

2. the latest in-development pre-release tar.gz source archive linked to at the top of this
web page:
https://elpa.gnu.org/devel/hyperbole.html.

Then decompress and unpack the archive to a directory of your choosing. Move into the
hyperbole-<version>/ directory and execute the following Posix shell command:

make bin

to byte-compile the Hyperbole lisp files. Then add the following lines to your personal
FEmacs initialization file, ~/.emacs:

ftp://ftp.gnu.org/gnu/hyperbole/
http://ftpmirror.gnu.org/hyperbole/
http://ftpmirror.gnu.org/hyperbole/
https://elpa.gnu.org/devel/hyperbole.html

Appendix B: Setup 109

(unless (and (featurep 'hyperbole) hyperbole-mode)
(when (< emacs-major-version 28)
(error "Hyperbole requires Emacs 28 or above, not %d"
emacs-major-version))
(push "<directory-ending-with-hyperbole-where-you-unpacked>"
load-path)
(require 'hyperbole)
(hyperbole-mode 1))

Restart Emacs and you should see the Hypb hyperbole minor mode indicator in your
modeline after startup.

Appendix B: Setup 110

B.2 Customization

Major Hyperbole user options may be set from the Customize submenu below the Hyperbole
menubar menu, as seen here.

All-Hyperbole-Options
[E Hyperbole-on-Menubar
E] Find-File-Accepts-URLs
Change-Key-Bindings
Display-Referents-in
Cisplay-URLs-in

Display-Web-Searches-in

b

Smart-Key-Press-at-Eol
[g Toggle-Isearch-Invisible-Text
E] Toggle-Messaging-Explicit-Buttons
[E Toggle-Override-Local-Keys
[E Togqgle-Rolo-Dates
E] Toggle-Smart-Key-Debug (HyDebug)

Image B.1: Hyperbole Customize Menu

Alternatively, the minibuffer-based menu, Cust/ may be used.

Generally, you should not need to change anything other than these options. However,
if you like to customize your environment extensively, there are many additional Hyperbole
customization options that may be changed with the Emacs customization interface, see
Section “Easy Customization Interface” in the GNU Emacs Manual. When you save any
changes within this interface, the changes are saved permanently to your personal Emacs
initialization file and are available in future Emacs sessions.

Use Cust/All-Options {C-h h ¢ a} to display an expandable tree of customizable Hyper-
bole options. Hyperbole’s customizations are further grouped into several sub-categories,
one for the Koutliner, one for the HyRolo, etc. You can select either an entire category
or a specific option and they will appear in another window for editing. Simply follow the
instructions on screen and then press the “Apply and Save” button to make any changes
permanent.

If you know the name of the option you want to edit, you can edit it at any time without
going through the tree of options. Use {M-x customize-variable RET} and then type the
name of the variable and press RET to edit it.

The following sections discuss the customization options most likely to be of interest to
users.

Appendix B: Setup 111

B.2.1 Referent Display

Hyperbole lets you control where link referents are displayed. It also permits setting a
specific Emacs function or external program to display them. There are four categories
of referents, each with its own customizable display setting, listed in decreasing order of
priority. All of these variables are defined within hpath.el.

Referent Category Variable Setting

Internal Image Display hpath:native-image-suffixes
Internal Custom Display hpath:internal-display-alist
External Display hpath:external-display-alist
Internal Standard Display hpath:display-where

Continue reading the next sections for information on how referents are displayed internally
and externally.

B.2.2 Internal Viewers

When given a filename to display, Hyperbole first checks if its suffix is matched by
hpath:native-image-suffixes. If so and if the function image-mode is defined, it uses
that mode together with the value of hpath:display-where to display the image within
an Emacs buffer.

If no match is found, the hpath:internal-display-alist variable is checked for a
filename match. Its value is an association list whose elements are (<file-name-regular-
expression> . <function-of-one-arg>) pairs. Any path whose name matches a <file-name-
regular-expression> will be displayed by calling the associated <function-of-one-arg> with
the filename as the argument. The first regular expression that matches each filename is
the one used. This can be used to format raw data files for convenient display.

By default, this setting handles the following types of files:

e Audio Files
Major audio format files are played with the play-sound-file command.

e Info Manuals
Files with a .info suffix (may also be compressed) are displayed in the Info
browser.

e RDB Files
Files with an .rdb suffix are displayed as relational databases using the RDB
package available with InfoDock.

Links to standard files, those which don’t match any special referent category described
earlier, are displayed in an Emacs window specified by the hpath:display-where setting.
It may be changed with the Cust/Referents {C-h h ¢ r} menu.

Available options are:

o Any-Frame
Display in the selected window of another existing frame

o Current- Win
Display in the selected (current) window

Appendix B: Setup 112

o Diff-Frame-One- Win
Display in the selected window of another existing frame, deleting its other
windows

o New-Frame
Display in a new single window frame

o Other-Win
Display in another, possibly new window of the selected frame (this is the
default)

o Single-Win
Display in a window of the selected frame and delete its other windows

Appendix B: Setup 113

Alternatively, you can use the Hyperbole menubar menu as shown here:

About-Hyperbole
Demonstration

Manual

What-is-New?
Remave-This-Menu
Activate-Button-at-Point
Back-to-Prior-Location

Button-File

- g

Documentation b [E Hyperbole-on-Menubar

Explicit-Buttan » | [] Find-File-Accepts-URLs

Find 4 Change-Key-Bindings

Implicit-Button 4 Display-URLs-in 4 @ Other-Window

Koutliner 4 Display-Web-Searches-in » (O one-window

Mail-Lists ’ Smart-Key-Press-at-Eol] O Mew-Frame

Rolo (w4 Toggle-Isearch-Invisible-Text (O Other-Frame

Screen (HyControl) (] Toggle-Messaging-Explicit-Buttans (O other-Frame-One-Window

Window-Configuration g | [E Toggle-Override-Local-Keys

] [g Toggle-Rolo-Dates
[:] Toggle-Smart-Key-Debug (HyDebug)

Image B.2: Display Referents Menu

See Section B.2.3 [External Viewers], page 113, for instructions on associating filenames
with external, window-system specific viewers.

B.2.3 External Viewers

If you use Hyperbole under a window system, the hpath:get-external-display-alist
function in hpath.el supports hyperlinks that open files using external, non-Emacs tools,
e.g. a pdf reader or a vector graphics viewer.

The value returned by hpath:get-external-display-alist is determined based on
the window system supported by the current frame and the version of Emacs in use. This
value is an association list whose elements are (<file-name-regular-expression> . <viewer-
program-or-list>) pairs. Any path whose name matches a <file-name-regular-expression>
will be displayed using the corresponding viewer-program or the first viewer-program found
on the system from a list of programs. If a <viewer-program> entry contains a ‘%s’ string, the
filename to display is substituted at that point within the string. Otherwise, the filename

Appendix B: Setup 114

is appended to the <viewer-program> entry. Alternatively, the viewer-program may be a
Lisp function that takes a single filename argument.

The association lists used by this function are stored in variables for each available win-
dow system: hpath:external-display-alist-macos, hpath:external-display-alist-
mswindows, and hpath:external-display-alist-x. Examine and modify these values to
suit your needs.

Part of these values for each operating system come from the variable,
hpath:external-file-suffixes’, which holds a regular expression of operating system
independent file suffixes to open outside Emacs.

B.2.4 Link Variable Substitution

Another option to consider modifying is hpath:variables. This option consists of a list
of Emacs Lisp variable names, each of which may have a pathname or a list of pathnames
as a value. Whenever a Hyperbole file or directory link button is created, its pathname
is compared against the values in hpath:variables. The first match found, if any, is
selected and its associated variable name is substituted into the link pathname, in place of
its literal value. When a link button is activated, potentially at a different site, Hyperbole
replaces each variable in the link pathname with the first matching value from this list to
recreate the literal pathname. Environment variables and Emacs Lisp variables delimited
by \"${variable-name}\" are also replaced whenever link paths are resolved.

This permits sharing of links over wide areas, where the variable values differ between
link creator and link activator. The entire process is wholly transparent to the user; it
is explained here simply to help you in deciding whether or not to modify the value of
hpath:variables.

B.2.5 Web Search Engines

The Find/Web menu offers quick access to major web search engines. It is typically bound
to {C-c /} or if not, then {C-h h £ w} is always available. Your standard web browser will
be used to return the search results.

The hyperbole-web-search-alist variable controls the items in this menu. Elements
of this alist are of the form: (<web-service-name> . <url-with-%s-parameter-or-command>).
The first capitalized character of each <web-service-name> must be unique for minibuffer
menu selection. The second part of an element is either:

1. a URL with an embedded %s indicating where to substitute a search term that
is interactively prompted for when the menu item is activated;

2. or an Emacs command symbol that interactively prompts for a URL and a
search term and then displays the search results.

Advanced users can change the search engines listed in the Find/Web menu with
{M-x customize-variable RET hyperbole-web-search-alist RET}. Changes are
automatically reflected in the Hyperbole menus once applied. Remember each search
engine name must begin with a unique letter and each URL must have a %s format field
indicating where to place the web search term when a search is performed.

Appendix B: Setup 115

You can change which browser is used with {C-h h ¢ w}, the Cust/Web-Search menu.
Below is the equivalent Hyperbole menubar menu.

About-Hyperbole
Demonstration

Manual

What-is-Mew?
Remove-This-Menu
Activate-Button-at-Point
Back-to-Prior-Location

Button-File

- B

Documentation b [E Hyperbole-on-Menubar
Explicit-Button » [Find-File-Accepts-URLs
Find 4 Change-Key-Bindings 4
Glabal-Button 4 Display-Referents-in 4
Implicit-Button 4 Display-URLs-in 4
Fosire " O chvome (soogle)
Mail-Lists ’ Smart-Key-Press-at-Eol » (O chromium
Rolo ’ [E Toggle-lsearch-lInvisible-Text @ Default (System wide]
Screen (HyControl) 4 D Toggle-Messaging-Explicit-Buttons O EWW (Emacs)
Window-Configuration ’ | [E Toggle-Override-Local-Keys O Emacs Text Browser
(v Toggle-Rolo-Dates O Firefox
D Toggle-Smart-Key-Debug (HyDebug) O KDE

| O XTerm Text Browser

E] Toggle-URLs-in-Mew-Window

Image B.3: Web Search Browser Menu

B.2.6 Using URLs with Find-File

Hyperbole always recognizes URLs within buffers when the Action Key is pressed on them.
But sometimes it is useful to enter a URL at a prompt and have it displayed. Hyperbole can
recognize s/ftp and www URLs given to the find-file command (or any other find-file-
* commands). But because there is added overhead with this feature, it is not enabled by
default.

To enable the feature, use the Hyperbole menu item Cust/Find-File-URLs (or Find-
File-Accepts-URLs on the Hyperbole/Customize pulldown menu). Either of these toggles
acceptance of URLs. When enabled the string, URLs, appears in the parenthesized minor-
mode section of the modeline.

Appendix B: Setup 116

To enable this feature each time you start the editor, add the following to your personal
initialization file after initializing Hyperbole: (hpath:find-file-urls-mode 1).

Both full URLs and abbreviated ones, like www.gnu.org, are recognized. filename com-
pletion does not work with URLSs; you have to type or paste in the entire URL. This feature
will work only if you have the builtin Tramp Emacs Lisp package; if you don’t have Tramp,
an error message will be displayed when you try to enable find-file URLs.

The web browser used to display URLs may be set with the minibuffer menu Cust/URL-
Display {C-h h ¢ u} or with this Hyperbole menubar menu.

About-Hyperbole
Demonstration

Manual

What-is-Mew?
Remave-This-Menu
Activate-Button-at-Point
Back-to-Prior-Location

Button-File

- B

Documentation b [E Hyperbole-on-Menubar
Explicit-Button » | [] Find-File-Accepts-URLs
Find 4 Change-Key-Bindings 4
Global-Button 4 Display-Referents-in
Koutliner ’ Display-Web-Searches-in O Chromium
Mail-Lists ’ Smart-Key-Press-at-Eol b @ Default (System wide)
Rolo 4 (v Toggle-lsearch-Invisible-Text O Eww (Emacs)
Screen (HyControl) ’ (] Toggle-Messaging-Explicit-Buttons (O Emacs Text Browser
Window-Configuration ’ | [¥ Toggle-Override-Local-Keys (O Firefox

[E Toggle-Rolo-Dates O KDE

(] Toggle-Smart-Key-Debug (HyDebug) (O XTerm Text Browser

" [] Toggle-URLs-in-New-Window
Image B.4: URL Browser Menu

B.2.7 Invisible Text Searches

This is largely for outline modes such as the Koutliner. By default, character-by-character
interactive search on {C-s} will search through invisible/hidden text, making the text tem-
porarily visible until point moves past that hidden part. When a search match is selected,
the surrounding text remains visible.

Appendix B: Setup 117

You can temporarily disable searching of hidden text by typing {M-s i} while in an
incremental search. This key sequence toggles that setting and makes searches look only
at visible text (or the reverse when invoked again). The setting lasts through the current
interactive search only.

B.2.8 Highlight Menu Key Toggle

The Cust/Highlight-Menu-Keys-Toggle menu item toggles whether each menu item’s acti-
vation key is highlighted or not. This is on by default and typically bolds and underlines
the highlighted key.

B.2.9 Configuring Button Colors

When Hyperbole is run under a window system, it automatically highlights any explicit
buttons in a buffer and makes them flash when selected. The main setting you may want
change is the selection of a color (or style) for button highlighting and button flashing. See
the hui-*-bx*. el files for lists of potential colors and the code which supports this behavior.
A call to (hproperty:cycle-but-color) in the hsettings.el file changes the color used
to highlight and flash explicit buttons.

You may also change the length of time in fractions of a second that a button flashes by
setting hproperty:but-flash-time-seconds.

Whether or not buttons are highlighted is controlled by hproperty:but-highlight-
flag, which defaults to ‘t’. To disable highlighting, change this setting in hsettings.el
or use Hyperbole menu item, Cust/All-Options, and select the Hyperbole Buttons group to
edit its options.

If you read in a file with explicit buttons before you load Hyperbole, these buttons
won’t be highlighted. Load Hyperbole and then use {M-x hproperty:but-create RET} to
highlight the buttons in the current buffer.

Additionally, if hproperty:but-emphasize-flag is set to ‘t’, then whenever the mouse
pointer moves over an explicit button, it will be emphasized in a different color or style.
This emphasis is in addition to any non-mouse-sensitive button highlighting.

118

Appendix C Hyperbole Key Bindings

This appendix covers two topics: 1. how to bind Hyperbole minibuffer menu items to global
keys and 2. summaries of all of Hyperbole’s default key bindings. User-specific Hyperbole
key binding customizations override Hyperbole’s defaults.

C.1 Binding Minibuffer Menu Items

To programmatically bind {C-c d} to the Hyperbole minibuffer menu command Doc/Demo
for example, use the following expression:

(global-set-key "\C-cd" (kbd "C-h h dd"))

To interactively bind a global key to a minibuffer menu item, use {M-x hyper-
bole-set-key RET}. This command will first prompt for the key sequence you want to
use to activate the menu item. Immediately after, it will display the Hyperbole top-level
minibuffer menu. Simply type the keys to select the item you want to bind to your key.

C.2 Default Hyperbole Bindings

Hyperbole’s default key bindings can be viewed and edited from either the
Cust/KeyBindings minibuffer menu or from the Hyperbole menubar menu as shown here:

About-Hyperbole
Demonstration

Manual

What-is-Mew?
Remove-This-Menu
Activate-Button-at-Paint
Back-to-Prior-Location

Button-File

-

Documentation 4 [Z Hyperbole-on-Menubar

Explicit-Buttan P | (] Find-File-Accepts-URLs

Global-Button 4 Display-Referents-in » Button-Rename-Key {C-cC-n)

Implicit-Button 4 Display-URLs-in » Drag-Emulation-Key {M-a)

Koutliner ’ Display-Web-Searches-in » Find-Web-Key (C-e i)

Mail-Lists 4 Smart-Key-Press-at-Eol b Grid-of-Windows-Key (C-c@)

Rolo [E Toggle-lsearch-Invisible-Text Hyperbole-Menu-Key (c-nh)

Sereen (HyControl) ' D Toggle-Messaging-Explicit-Buttons Jump-Thing-Key (C-c)

Window-Configuration ' | [Toggle-Override-Local-Keys Mark-Thing-Key (C-c RET)
[+ Toggle-Rolo-Dates Smart-Help-Key (C-hA)
(] Toggle-Smart-Key-Debug (HyDebug) . Windows-Control-Key (C-c)

Image C.1: Hyperbole Key Bindings Menu

Appendix C: Hyperbole Key Bindings 119

Below are descriptions of Hyperbole’s default keyboard key bindings. All except {C-h h}
(the global key used to enable Hyperbole and display its minibuffer menu) are bound within
Hyperbole’s minor mode keymap, hyperbole-mode-map.

{M-RET?}

Action Key: Invoke the Action Key in the present context.

{C-u M-RET?}

{C-c \}

{C-c /}

{C-c @}

{M-o}

{C-h h}
{C-h h X}

{C-h A}

Assist Key: Invoke the Assist Key in the present context.

HyControl: Control windows, frames and buffer display. This binding is made
only if the key is not bound prior to initializing Hyperbole.

Search the Web: Display a minibuffer menu of web search engines. Once an
engine is selected, prompt for a search term and perform the associated search.

This binding is made only if the key is not bound prior to initializing Hyper-
bole; it also defers to any major-mode binding. When needed, the Find/Web
minibuffer menu item, {C-h h £ w}, will do the same thing.

Display a grid of windows in the selected frame, sized according to the prefix
argument. The left digit of the argument is the number of grid rows and the
right digit is the number of grid columns. Use {C-h h y} to restore the prior
frame configuration.

If the argument is 0, prompt for a major mode whose buffers should be displayed
first in the grid windows, then prompt for the grid size.

If the argument is < 0, prompt for a shell glob-type file pattern and display files
that match the pattern in an auto-sized windows grid.

This binding is made only if the key is not bound prior to initializing Hyperbole;
it also defers to any major-mode binding and when outline-minor-mode is
active.

For further details, see the {@} key binding description in Chapter 8 [HyCon-
trol], page 57.

Drag Operation: Keyboard emulation of the start and stop of mouse drags to
invoke Smart Key actions. This binding is made only if the key is not bound
prior to initializing Hyperbole and if Emacs is run under a window system. If
the Ace Window package is loaded, then Ace Window commands are typically
bound to {M-o} instead. Then {M-o w} may be used to quickly create an
implicit link button in the selected window that links to a referent in any other
window chosen via the Ace Window prompt.

Hyperbole Mini Menu: Enable Hyperbole minor mode and invoke the Hyper-
bole minibuffer menu, giving access to many Hyperbole commands. This is
bound globally. Use {C-h h X} to close the Hyperbole minibuffer menu and
disable Hyperbole minor mode.

Action Key Help: Show what the Action Key will do in the current context.

{C-u C-h A}

Assist Key Help: Show what the Assist Key will do in the same context.

Appendix C: Hyperbole Key Bindings 120

{C-c RET} Mark Things: Mark larger and larger syntactical units in a buffer when invoked
repeatedly, showing in the minibuffer the type of unit marked each time. For
example, if on an opening brace at the start of a C, Java or Javascript function,
this marks the whole function.

This binding is made only if the key is not bound prior to initializing Hyperbole;
it also defers to any major-mode binding.

{C-c .} Delimited Thing Jump: Jump between the start and end of a delimited thing,
which may be an HTML tag pair.

This binding is made only if the key is not bound prior to initializing Hyperbole;
it also defers to any major-mode binding. See Section 3.5 [Smart Key Thing
Selection], page 16, for more information.

{M-w} Delimited Thing, Koutline Cell Reference or Region Copy: While Hyperbole
is active, it sets mark-even-if-inactive to nil and overrides {M-w} with its
own command, hui-kill-ring-save, which copies the region only when it
is active/highlighted. When there is no active region, {M-w} does one of the
following:

1. in a Koutline klink, copies the klink;

2. in a Koutline cell, outside any klink, copies a klink reference to the current
cell;

3. on a Hyperbole button, copies the text of the button excluding delimiters;
4. at the start of a paired delimiter, copy the text including the delimiters.

{C-x r s} Delimited Thing, Koutline Cell Reference or Region Save to Register: This does
the same thing as {M-w} except it copies to an Emacs register given by a letter
or number rather than the kill ring. While Hyperbole is active, it overrides
{C-x r s} with its own command, hui-copy-to-register. which copies the
region only when it is active/highlighted.

The variable, hkey-init, controls whether or not any Hyperbole key bindings are made
when hyperbole-mode is active. It is set to ‘t’ (true) by default in hyperbole.el. This
setting means all Hyperbole key bindings will be initialized when Hyperbole is loaded.
If you want to disable these bindings permanently, simply add (setq hkey-init nil) to
your ~/.emacs file prior to the point at which you load Hyperbole; then restart Emacs.
Henceforth, you will have to choose the Hyperbole commands that you want to use and
bind those to keys.

If you ever want to temporarily disable Hyperbole key and mouse bindings, simply toggle
Hyperbole minor mode off with the hyperbole-mode command. There is no default key
binding for this command; use {M-x hyperbole-mode RET}. Alternatively, you may select
a key and bind it as part of any setting of hyperbole-init-hook within your personal
~/.emacs file. For example:

(add-hook 'hyperbole-init-hook
(lambda () (global-set-key
"\C-ct" 'hyperbole-mode)))

Appendix C: Hyperbole Key Bindings 121

C.3 Testing

Hyperbole includes over 200 automated test cases in the test/ subdirectory. You can run
all of them by moving to the Hyperbole home directory in a Posix shell and run make
test-all or make test to run just non-interactive tests. If any tests fail, you can press the
Action Key to see the source of the failure. Full testing is supported under POSIX systems
only.

With Hyperbole active, you can also define implicit buttons that run individual or sets
of Hyperbole tests. The file hypb-ert.el contains two action link types:

hyperbole-run-test - run a single Hyperbole test by name
hyperbole-run-tests - run one more tests matching a pattern

Example uses with a press of the Action Key:

Run the test hbut-defal-url:
<hyperbole-run-test hbut-defal-url>

Run the tests specified by the test selector hbut-defal:
<hyperbole-run-tests hbut-defal>

Run all tests:
<hyperbole-run-tests t>

122

Appendix D Koutliner Keys

This appendix summarizes the specialized key bindings available when editing a koutline
with Hyperbole. Each key is shown together with its command binding and the documenta-
tion for that command. Normal emacs editing keys are modified to account for the structure
within outlines. An outliner command which overloads an emacs command named cmd is

named kotl-

mode:cmd.

kfile:write {C-x C-w}

Write the current outline to FILE.

klink:create {C-c 1}

kotl-mode:

kotl-mode:

kotl-mode:

kotl-mode:

kotl-mode:

kotl-mode:

kotl-mode:

kotl-mode:

kotl-mode:

Insert at point an implicit link to REFERENCE. REFERENCE should be a
cell-ref or a string containing "filename, cell-ref". See the documentation for
(kcell:ref-to-id) for valid cell-ref formats.

add-below-parent {C-c p}

Add a new cell to current kview after current cell’s parent. If parent is the
hidden root cell 0, then add as the first cell of the outline. Otherwise, add it as
the next sibling of the parent cell.

add-cell {C-j}

Add a cell following current cell at optional RELATIVE-LEVEL with CON-
TENTS string. Optional prefix arg RELATIVE-LEVEL means add as sibling
if nil or >= 0, as child if equal to universal argument, {C-u}, and as sibling of
current cell’s parent, otherwise. If added as sibling of current level, RELATIVE-
LEVEL is used as a repeat count for the number of cells to add.

Return last newly added cell.

add-child {C-c a}
Add a new cell to current kview as first child of current cell.

add-prior-cell
Add a new cell to current kview as a prior sibling of the current cell.

append-cell {C-c +}

Append the CONTENTS-CELL to APPEND-TO-CELL. If neither cell has a
no-fill property and kotl-mode:refill-flag is enabled, then APPEND-TO-
CELL is refilled.

back-to-indentation {M-m}
Move point to the first non-read-only non-whitespace character on this line.

backward-cell {C-c C-b}
Move to prefix ARGth prior cell (same level) within current view. Return
number of cells left to move.

backward-char {C-b}
Move point backward ARG (or 1) characters and return point.

backward-kill-word {M-DEL}
Kill up to prefix ARG (or 1) words preceding point within a single cell.

Appendix D: Koutliner Keys

kotl-mode

kotl-mode

kotl-mode

kotl-mode

kotl-mode

kotl-mode

kotl-mode:

kotl-mode:

kotl-mode:

kotl-mode:

kotl-mode:

kotl-mode:

123

:backward-sentence {M-a}

Move point backward ARG (or 1) sentences and return point.

:backward-word {M-b}

Move point backward ARG (or 1) words and return point.

:beginning-of-buffer {M-<}

Move point to beginning of buffer and return point.

:beginning-of-cell {C-c ,}

Move point to beginning of current or ARGth - 1 prior cell and return point.

:beginning-of-line {C-a}

Move point to beginning of current or ARGth - 1 line and return point.

:beginning-of-tree {C-c "}

Move point to the level 1 root of the current cell’s tree. Leave point at the start
of the cell.

cell-help {C-c h}
Display a temporary buffer of CELL-REF’s attributes. CELL-REF defaults to
current cell. Optional prefix arg CELLS-FLAG selects the cells to print:

If = 1, print CELL-REF's cell only;

If > 1, print the visible tree rooted at CELL-REF;

If < 1, print all visible cells in current view
(In this last case, CELL-REF is not used).

See also the documentation for kotl-mode:cell-attributes.

center-line {M-s}

Center the line point is on, within the width specified by fill-column. This
means adjusting the indentation so that it equals the distance between the end
of the text and £ill-column.

center-paragraph {M-S}
Center each nonblank line in the paragraph at or after point. See center-line
for more information.

copy-after {C-c c}

Copy tree rooted at FROM-CELL-REF to follow tree rooted at TO-CELL-
REF. If prefix arg CHILD-P is non-nil, make FROM-CELL-REF the first child
of TO-CELL-REF, otherwise make it the sibling following TO-CELL-REF.

Leave point at the start of the root cell of the new tree.

copy-before {C-c C-c}

Copy tree rooted at FROM-CELL-REF to precede tree rooted at TO-CELL-
REF. If prefix arg PARENT-P is non-nil, make FROM-CELL-REF the first
child of TO-CELL-REF’s parent, otherwise make it the preceding sibling of
TO-CELL-REF.

Leave point at the start of the root cell of the new tree.
copy-tree-or-region-to-buffer {C-c M-c}

If no usable active region, prompt for and copy a Koutline tree to a specified
buffer, otherwise, copy the active region.

Appendix D: Koutliner Keys

kotl-mode:

kotl-mode

kotl-mode:

kotl-mode:

kotl-mode:

kotl-mode

kotl-mode

kotl-mode:

kotl-mode:

kotl-mode

kotl-mode:

kotl-mode:

124

Use 0 to copy the whole outline buffer. Prompt for whether or not to expand
and include any hidden/invisible text within the copied text.

copy-to-register {C-x x}
Copy into REGISTER the region START to END. With optional prefix arg
DELETE-FLAG, delete region.

:delete-backward-char {DEL}

Delete up to the preceding prefix ARG characters. Return number of charac-
ters deleted. Optional KILL-FLAG non-nil means save in kill ring instead of
deleting. Do not delete across cell boundaries.

delete-blank-lines {C-x C-o}

On blank line within a cell, delete all surrounding blank lines, leaving just one.
On isolated blank line, delete that one. On nonblank line, delete all blank lines
that follow it.

If nothing but whitespace follows point until the end of a cell, delete all white-
space at the end of the cell.

delete-char {C-d}

Delete up to prefix ARG characters following point. Return number of charac-
ters deleted. Optional KILL-FLAG non-nil means save in kill ring instead of
deleting. Do not delete across cell boundaries.

delete-indentation {M-"}

Join this line to previous and fix up whitespace at join. If there is a fill prefix,
delete it from the beginning of this line. With argument, join this line to the
following line.

:demote-tree {TAB}

Move current tree a maximum of prefix ARG levels lower in current view.
Each cell is refilled iff its no-fill attribute is nil and kotl-mode:refill-flag
is non-nil. With prefix ARG = 0, cells are demoted up to one level and
kotl-mode:refill-flag is treated as true.

:down-level {C-c C-d}

Move down prefix ARG levels lower within current tree.

end-of-buffer {M->}
Move point to the end of buffer and return point.

end-of-cell {C-c .}
Move point to end of current or ARGth - 1 succeeding cell and return point.

:end-of-line {C-e}

Move point to end of current or ARGth - 1 line and return point.

end-of-tree {C-c $}
Move point to the last cell in tree rooted at the current cell. Leave point at the
start of the cell.

example
Display the Koutliner example file for demonstration use by a user.

Appendix D: Koutliner Keys

kotl-mode:

kotl-mode

kotl-mode:

kotl-mode:

kotl-mode:

kotl-mode:

kotl-mode

kotl-mode:

kotl-mode:

kotl-mode

kotl-mode:

kotl-mode:

kotl-mode:

kotl-mode

kotl-mode

kotl-mode

125

exchange-cells {C-c e}
Exchange CELL-REF-1 with CELL-REF-2 in current view. Don’t move point.

:fill-cell {C-c M-j}

Fill current cell if it lacks the no-fill attribute. With optional JUSTIFY, jus-
tify cell as well. IGNORE-COLLAPSED-P is used when caller has already
expanded cell, indicating it is not collapsed.

fill-paragraph {C-x f}

Fill current paragraph within cell. With optional JUSTIFY, justify paragraph
as well. Ignore any non-nil no-fill attribute attached to the cell.

fill-tree {C-M-j}

Refill each cell within the tree whose root is at point.

first-sibling {C-c <}

Move point to the first sibling of the present cell. Leave point at the start of
the cell or at its present position if it is already within the first sibling cell.

fkey-backward-char {C-b} or {left}
Move point backward ARG (or 1) characters and return point.

:fkey-forward-char {C-f} or {right}

Move point forward ARG (or 1) characters and return point.

fkey-next-line {C-n} or {down}
Move point to ARGth next line and return point.

fkey-previous-line {C-p} or {up}
Move point to ARGth previous line and return point.

:forward-cell {C-c C-f}

Move to the prefix ARG following cell (same level) within current view. Return
number of cells left to move.

forward-char {C-f}
Move point forward ARG (or 1) characters and return point.

forward-para {M-n}
Move to prefix ARGth next cell (any level) within current view.

forward-paragraph {M-]1}
Move to prefix ARG next cell (any level) within current view.

:forward-sentence {M-e}

Move point forward ARG (or 1) sentences and return point.

:forward-word {M-f}

Move point forward ARG (or 1) words and return point.

:goto-cell {C-c g}

Move point to start of cell given by CELL-REF. (See the documentation for
(kcell:ref-to-id), for valid formats). Return point iff CELL-REF is found
within current view. With a prefix argument, CELL-REF is assigned the argu-
ment value for use as an idstamp.

Appendix D: Koutliner Keys 126

kotl-mode:

kotl-mode:

kotl-mode:

kotl-mode:

kotl-mode:

Optional second arg, ERROR-P, non-nil means signal an error if CELL-REF
is not found within current view. Will signal same error if called interactively
when CELL-REF is not found.

hide-sublevels {C-X $}
Hide all cells in outline at levels deeper than LEVELS-TO-KEEP (a number).
Show any hidden cells within LEVELS-TO-KEEP. 1 is the first level.

hide-subtree {C-M-h}
Hide subtree, ignoring root, at optional CELL-REF (defaults to cell at point).

hide-tree {C-c BS}
Collapse tree rooted at optional CELL-REF (defaults to cell at point).

indent-line {TAB}

Indent line relative to the previous one. With optional prefix ARG greater than
1, tab forward ARG times. See the documentation string of ‘kotl-mode:indent-
tabs-mode’ for details on when tabs are used for indenting.

indent-region {C-M-\}

Indent each nonblank line in the region from START to END. If there is a fill
prefix, make each line start with the fill prefix. With argument COLUMN,
indent each line to that column. Called from a program, takes three args:
START, END and COLUMN.

kimport:insert-file {C-x i}

Insert each paragraph in IMPORT-FROM as a separate cell in the current
view. Insert as sibling cells following the current cell. IMPORT-FROM may be
a buffer name or filename (filename completion is provided).

kimport:insert-register {C-x r i}

kotl-mode:

kotl-mode:

kotl-mode:

kotl-mode:

Insert contents of REGISTER at point in current cell. REGISTER is a char-
acter naming the register to insert. Normally puts point before and mark after
the inserted text. If optional second arg is non-nil, puts mark before and point
after. Interactively, second arg is non-nil if prefix arg is supplied.

just-one-space {M-\}
Delete all spaces and tabs around point and leave one space.

kill-contents {C-c k}
Kill contents of cell from point to cell end. With prefix ARG, kill entire cell
contents.

kill-line {C-k}
Kill ARG lines from point.

kill-region {C-w}

Kill region between START and END within a single kcell. With optional
COPY-P equal to t, copy region to kill ring but don’t kill it. With COPY-P
any other non-nil value, return region as a string without affecting the kill ring.

If called interactively and there is no active region, copy any delimited selectable
thing at point; see the documentation for hui:delimited-selectable-thing.

Appendix D: Koutliner Keys 127

kotl-mode:

kotl-mode:

kotl-mode:

kotl-mode:

kotl-mode:

kotl-mode:

kotl-mode:

kotl-mode:

kotl-mode:

kotl-mode:

kotl-mode:

kotl-mode:

kotl-mode:

If the buffer is read-only and COPY-P is nil, the region will not be deleted but
it will be copied to the kill ring and then an error will be signaled.

If a completion is active, this aborts the completion only.
kill-ring-save {M-w}
Copy region between START and END within a single keell to kill ring.

kill-sentence {M-k}
Kill up to prefix ARG (or 1) sentences following point within a single cell.

kill-tree {C-c C-k}
Kill ARG following trees starting with tree rooted at point. If ARG is a non-
positive number, nothing is done.

kill-word {M-d}
Kill up to prefix ARG words following point within a single cell.

last-sibling {C-c >}
Move point to the last sibling of the present cell. Leave point at the start of
the cell or at its present position if it is already within the last sibling cell.

mail-tree {C-c C-@}
Mail outline tree rooted at CELL-REF. Use "0" for whole outline buffer.

move-after {C-c m}

Move tree rooted at FROM-CELL-REF to follow tree rooted at TO-CELL-
REF. If prefix arg CHILD-P is non-nil, make FROM-CELL-REF the first child
of TO-CELL-REF, otherwise make it the sibling following TO-CELL-REF.
With optional COPY-P, copy tree rather than moving it.

Leave point at original location but return the tree’s new start point.

move-before {C-c RET}

Move tree rooted at FROM-CELL-REF to precede tree rooted at TO-CELL-
REF. If prefix arg PARENT-P is non-nil, make FROM-CELL-REF the first
child of TO-CELL-REF’s parent, otherwise make it the preceding sibling of
TO-CELL-REF. With optional COPY-P, copy tree rather than moving it.

Leave point at original location but return the tree’s new start point.
newline {RET}

Insert a newline. With ARG, insert ARG newlines. In Auto Fill mode, if no
numeric arg, break the preceding line if it is too long.

next-cell {C-c C-n}
Move to prefix ARG next cell (any level) within current view.

next-line {C-n}
Move point to ARGth next line and return point.

open-line {C-o}
Insert a newline and leave point before it. With arg N, insert N newlines.
overview {C-c C-o}

Show only the first line of each cell in the current outline. With a prefix arg,
also toggle the display of blank lines between cells.

Appendix D: Koutliner Keys

kotl-mode

kotl-mode

kotl-mode

kotl-mode:

kotl-mode:

kotl-mode:

kotl-mode:

kotl-mode:

kotl-mode:

kotl-mode

kotl-mode:

kotl-mode

kotl-mode:

128

:previous-cell {C-c C-p}

Move to prefix ARG previous cell (any level) within current view.

:previous-line {C-p}

Move point to ARGth previous line and return point.

:promote-tree {M-TAB} or {SHIFT-TAB}

Move current tree a maximum of prefix ARG levels higher in current view.
Each cell is refilled iff its no-fill attribute is nil and kotl-mode:refill-flag
is non-nil. With prefix ARG = 0, cells are promoted up to one level and
kotl-mode:refill-flag is treated as true.

scroll-down {M-v}
Scroll text of current window downward ARG lines; or a windowful if no ARG.

scroll-up {C-v}
Scroll text of current window upward ARG lines; or a windowful if no ARG.

set-cell-attribute {C-c C-i}

Include ATTRIBUTE VALUE with the current cell or the cell at optional POS.
Replace any existing value that ATTRIBUTE has. When called interactively,
display the setting in the minibuffer as confirmation.

set-fill-prefix {C-x 1}
Set fill prefix to line up to point. With prefix arg TURN-OFF or at begin of
line, turn fill prefix off.

show-all {C-c C-a}
Show (expand) all cells in current view. With a prefix arg, also toggle the
display of blank lines between cells.

show-subtree
Show subtree, ignoring root, at optional CELL-REF (defaults to cell at point).

:show-tree {C-c C-s}

Display fully expanded tree rooted at CELL-REF.

split-cell {C-c s}

Split cell into two cells and move to new cell. Cell contents after point become
part of newly created cell. Default is to create new cell as sibling of current
cell. With optional universal ARG, {C-u}, new cell is added as child of current
cell.

:top-cells {C-c C-t}

Collapse all level 1 cells in view and hide any deeper sublevels. With a prefix
arg, also toggle the display of blank lines between cells.

transpose-cells {C-c t}

Exchange current and previous visible cells, leaving point after both. If no
previous cell, exchange current with next cell. With prefix ARG, take current
cell and move it past ARG cells. With prefix ARG = 0, interchange the cell
that contains point with the cell that contains mark.

Appendix D: Koutliner Keys 129

kotl-mode

kotl-mode

kotl-mode

kotl-mode

kotl-mode

kotl-mode

kotl-mode

:transpose-chars {C-t}

Interchange characters around point, moving forward one character. With pre-
fix ARG, take character before point and drag it forward past ARG other
characters (backward if ARG negative). If no prefix ARG and at end of line,
the previous two characters are exchanged.

:transpose-lines {C-x C-t}

Exchange current line and previous line, leaving point after both. If no previous
line, exchange current with next line. With prefix ARG, take previous line and
move it past ARG lines. With prefix ARG = 0, interchange the line that
contains point with the line that contains mark.

:transpose-words {M-t}

Interchange words around point, leaving point after both words. With prefix
ARG, take word before or around point and drag it forward past ARG other
words (backward if ARG negative). If ARG is zero, the words around or after
point and around or after mark are interchanged.

:up-level {C-c C-u}
Move up prefix ARG levels higher in current outline view.

:yank {C-y}

Reinsert the last stretch of killed text. More precisely, reinsert the stretch of
killed text most recently killed OR yanked. Put point at end, and set mark at
beginning. With just C-u as argument, same but put point at beginning (and
mark at end). With argument N, reinsert the Nth most recently killed stretch
of killed text. See also the command, (kotl-mode:yank-pop).

:yank-pop {M-y}

Replace just-yanked stretch of killed text with a different stretch. This
command is allowed only immediately after a (yank) or a (yank-pop). At
such a time, the region contains a stretch of reinserted previously-killed text.
(yank-pop) deletes that text and inserts in its place a different stretch of
killed text.

With no argument, the previous kill is inserted. With argument N, insert the
Nth previous kill. If N is negative, this is a more recent kill.

The sequence of kills wraps around, so that after the oldest one comes the
newest one.

:zap-to-char {M-z}
Kill up to and including prefix ARGth occurrence of CHAR. Goes backward if
ARG is negative; error if CHAR not found.

kview:set-label-separator {C-c M-1}

Set the LABEL-SEPARATOR (a string) between labels and cell contents for
the current kview. With optional prefix arg SET-DEFAULT-P, the default
separator value used for new outlines is also set to this new value.

kview:set-label-type {C-c C-1}

Change kview’s label display type to NEW-TYPE, updating all displayed la-
bels. See documentation for the kview:default-label-type variable, for valid
values of NEW-TYPE.

Appendix D: Koutliner Keys 130

kvspec:activate {C-c C-v}
Activate optional VIEW-SPEC or existing view specification
over the current koutline. VIEW-SPEC must be a string. See
‘<${hyperb:dir}/kotl/EXAMPLE.kot1#2b17=048>" for details on valid view
specs.

kvspec:toggle-blank-lines {C-c b}
Toggle blank lines between cells on or off.

131

Appendix E Smart Key Reference

This appendix documents Hyperbole’s context-sensitive Smart Key operations. It is quite
extensive and is meant for reference rather than sequential reading. See Chapter 3 [Smart
Keys], page 11, for a description of the Smart Keys. That section also describes how to get
context-sensitive Smart Key help, with which you can explore Smart Key operation bit by
bit.

What a Smart Key does depends on the context in which it is used. Smart Key operations
are context-sensitive. Contexts are defined by logic conditionals, e.g. when depressed here,
if this is true, etc. Each Smart Key context is listed in the order in which it will be checked.
The first matching context is always the one applied. Within each context, the actions
performed by the Action and Assist Keys are given.

E.1 Smart Mouse Keys

The contexts and actions in this section, like drags and modeline clicks, apply only if you
have mouse support within Hyperbole. The Smart Key operations in Section E.2 [Smart
Keyboard Keys|, page 136, apply to both mouse and keyboard Smart Key usage.

The following section documents what the Smart Mouse Keys do in each context, with
the contexts listed in decreasing order of priority, i.e. the first context to match is the one
that is used. If no matching mouse key context is found, then the keyboard key contexts
are searched in order.

E.1.1 Minibuffer Menu Activation

When clicked within an inactive minibuffer:

ACTION KEY
The Hyperbole minibuffer menu is displayed for selection, by default.
The variable action-key-minibuffer-function controls this behavior.

ASSIST KEY
The buffer, window and frame jump menu is displayed for selection, by default.
You can jump to buffers categorized by major mode, jump to windows by buffer
name, or to frames by name. Manage your windows and frames quickly with this
menu as well. This is the same menu that a click in a blank area of the
modeline displays by default since they are typically so close together. The
variable assist-key-minibuffer-function controls this behavior.

E.1.2 Thing Selection

In a programming or markup language buffer, when pressed/clicked at
the start or end of a delimited thing (including lists, comments,
strings, arrays/vectors, sets, functions and markup pair tags in a
markup language), and not at the end of a line:
ACTION KEY
Marks the thing for editing.
ASSIST KEY
Marks and kills the thing for yanking elsewhere.

Note that the press must be on the first character of the delimiter of the thing.

Appendix E: Smart Key Reference 132

There are also drag actions that work on delimited things. Delimited things include
parenthesized lists, single and double quoted strings, bracketed arrays/vectors, sets with
braces, programming language functions and markup pair tags (e.g. <div> </div> in
HTML).

If no region is selected when the Action Mouse Key is dragged from a thing delimiter to
another location, it copies the delimited thing to the release point of the drag. The release
location may be in the same or a different buffer but if in the same buffer it must be outside
of the delimited thing itself. Similarly, the Assist Mouse Key kills (cuts) the delimited thing
at its original location and yanks (pastes) it at the new location.

The start of the drag must be on the first character of the starting or ending delimiter.
For strings and comments, the drag must start on the first line of the thing.

Experiment with these drag actions and you will quickly find them easy to use and
indispensable.

E.1.3 Side-by-Side Window Resizing

If dragged from a side-by-side window edge or from the immediate left of
a vertical scroll bar:

ACTION KEY or ASSIST KEY
Resizes adjacent window sides to the point of the drag release.

Appendix E: Smart Key Reference 133

E.1.4 Modeline Clicks and Drags

If depressed within a window modeline:
ACTION MOUSE KEY

(1) clicked on the first blank character of a window’s modeline,
the window’s buffer is buried (placed at the bottom of the
buffer list);

(2) clicked on the right edge of a window’s modeline, the Info
buffer is displayed, or if it is already displayed and the
modeline clicked upon belongs to a window displaying Info,
the Info buffer is hidden;

(3) clicked on the buffer id of a window’s modeline, dired is run
on the current directory, replacing the window’s buffer;
successive clicks walk up the directory tree

(4) clicked anywhere within the middle of a window’s modeline,
the function given by action-key-modeline-function is
called;

(5) dragged vertically from a modeline to within a window, the
modeline is moved to the point of the drag release, thereby
resizing its window and potentially its vertically neighboring
windows;

(6) dragged other than straight vertically from a modeline to another
window, duplicate the modeline’s window buffer to the window of
release;

(7) dragged from a bottommost modeline when the frame has a non-nil
drag-with-mode-line property, then move the frame until
release of the Action Mouse Key;

(8) otherwise, dragged from a another modeline to outside of
Emacs (MacOS only), create a new frame sized to match the
selected window with the same buffer.

Appendix E: Smart Key Reference 134

ASSIST MOUSE KEY

(1) clicked on the first blank character of a window’s modeline,
the bottom buffer in the buffer list is unburied and placed in
the window;

(2) clicked on the right edge of a window’s modeline, the summary
of Smart Key behavior is displayed, or if it is already
displayed and the modeline clicked upon belongs to a window
displaying the summary, the summary buffer is hidden;

(3) clicked on the buffer id of a window’s modeline, the next
buffer in sequence is displayed in the window;

(4) clicked anywhere within the middle of a window’s modeline,
the function given by assist-key-modeline-function is
called;

(5) dragged vertically from a modeline to within a window, the
modeline is moved to the point of the drag release, thereby
resizing its window and potentially its vertically neighboring
windows;

(6) dragged other than straight vertically from a modeline to another
window, swap buffers in the two windows;

(7) dragged from a bottommost modeline when the frame has a non-nil
drag-with-mode-line property, then move the frame until
release of the Action Mouse Key;

(8) dragged from a modeline to outside of Emacs (MacOS only),
create a new frame sized to match the selected window with
the same buffer. If there is only one window in the source
frame or if hycontrol-keep-window-flag is non-nil,
leave the original window and just clone it into the new
frame; otherwise, delete the original window.

If dragged from a window and released within a window modeline:
ACTION KEY
(1) If depress was on a buffer name in Buffer-menu/ibuffer mode or on
a file/directory in dired mode, splits the release window and displays
the item in the original release window.
(2) Otherwise, splits the release window and displays the depress window’s
buffer in the original release window.
ASSIST KEY
Swaps buffers in the two windows.

E.1.5 Smart Mouse Drags between Windows

If an active (highlighted) region exists within the editor:
ACTION KEY
Copies and yanks (pastes) the region to the release point in a
different window.
ASSIST KEY
Kills (cuts) and yanks (pastes) the region to the release point
in a different window.

Appendix E: Smart Key Reference 135

Otherwise, if dragged from inside one window to another:
ACTION AND ASSIST KEYS

(1) If depress was on a buffer name in Buffer-menu/ibuffer mode or on
a file/directory in dired mode, displays the item in window of release.
If the drag start position is within a button, displays the button
referent in window of release.
See hmouse-drag-item-mode-forms for how to allow for draggable
items in other modes.

(2) Otherwise, creates a new link button at the drag start location,
linked to the drag end location. Action Key creates an implicit button;
Assist Key creates an explicit button.

In Hyperbole versions prior to 9, Assist Key drags between windows would
swap buffers. In version 9 and above, start or end the drag between
windows on a modeline to get this same behavior.

E.1.6 Smart Mouse Drags within a Window

If a region is active and a drag occurs within a single buffer/window:
ACTION KEY
Restores region to before Action Key drag and signals an error.
ASSIST KEY
Restores region to before Action Key drag and signals an error.

(Note that hmouse-x-drag-sensitivity sets the minimal horizontal
movement which registers a drag). If dragged horizontally within a
single window from anywhere but a thing delimiter:
ACTION KEY
Splits the current window, adding a window below.
ASSIST KEY
Deletes the current window if it is not the sole window in the
current frame.

(Note that hmouse-y-drag-sensitivity sets the minimal vertical
movement which registers a drag). If dragged vertically within a
single window from anywhere but a thing delimiter:
ACTION KEY
Splits the current window, adding a window to the right.
ASSIST KEY
Deletes the current window if it is not the sole window in the
current frame.

Appendix E: Smart Key Reference 136

If dragged diagonally within a single window while depressed
(‘hmouse-x-diagonal-sensitivity’” and ‘hmouse-y-diagonal-sensitivity’ set
the minimal diagonal movements which register a drag):
ACTION KEY
Saves the window configuration for the selected frame onto a ring
of window configurations.
ASSIST KEY
Restores the prior window configuration from the ring. A prefix
argument N specifies the Nth prior configuration from the ring.

E.1.7 Smart Mouse Drags outside a Window

If dragged from an Emacs window to outside of Emacs:
ACTION KEY
(1) If depress was on a buffer name in Buffer-menu/ibuffer mode or on
a file/directory in dired mode, display the item in a new frame.
See hmouse-drag-item-mode-forms for how to allow for draggable
items in other modes.
(2) If depress was anywhere else, create a new frame sized to match the
selected window with the same buffer.
ASSIST KEY
Create a new frame sized to match the selected window with the same buffer.
If there is only one window in the source frame or if hycontrol-keep-window-flag
is non-nil, leave the original window and just clone it into the new frame;
otherwise, delete the original window.

E.2 Smart Keyboard Keys

E.2.1 Smart Key - Company Mode

Company mode is an extensive in-buffer completion framework, often used to complete
programming identifiers.

When company-mode is active:
ACTION KEY
Displays selected item’s definition.
ASSIST KEY
Displays the documentation, if any, for the selected item.

Appendix E: Smart Key Reference 137

E.2.2 Smart Key - Org Mode

When in an Org mode context and hsys-org-enable-smart-keys is non-nil:
ACTION KEY
(1) If on an Org todo keyword, cycle through the keywords in
that set or if final done keyword, remove it.

(2) If on an Org agenda view item, jump to the item for editing.

(3) Within a radio or internal target or a link to it, jump between
the target and the first link to it, allowing two-way navigation.

(4) Follow other internal links and ID references in Org mode files.
(5) Follow Org mode external links.
(6) When on a Hyperbole button, activate the button.

(7) With point on the :dir path of a code block definition, display the
directory given by the path.

(8) With point on any #+BEGIN_SRC, #+END_SRC, #+RESULTS, #+begin_example
or #+end_example header, execute the code block via the Org mode
standard binding of {C-c C-c}, org-ctrl-c-ctrl-c.

(9) When point is on an Org mode heading, cycle the view of the subtree
at point.

(10) In any other context besides the end of a line, invoke the Org mode
standard binding of {M-RET}, org-meta-return.

Appendix E: Smart Key Reference 138

When the ASSIST KEY is pressed, it behaves just like the Action Key except
in these contexts:

(1) If on an Org todo keyword, move to the first todo keyword in
the next set, if any.

(2) If on an Org mode link, ID reference or agenda view item, display
Hyperbole context-sensitive help.

(3) On a Hyperbole button, perform the Assist Key function, generally
showing help for the button.

(4) With point on the :dir value of a code block definition, display
a help summary of this implicit directory button.

(5) With point on any #+BEGIN_SRC, #+END_SRC, #+RESULTS, #+begin_example
or #+end_example header, remove source block results.

(6) Not on a Hyperbole button but on an Org mode heading, cycle
through views of the whole buffer outline.

Org links may be used outside of Org mode buffers. Such links are handled by the sepa-
rate implicit button type, org-link-outside-org-mode. Org Roam and Org IDs may be
activated as hyperbuttons outside of Org mode buffers. They are handled by the separate
implicit button type, org-id.

E.2.3 Smart Key - Ivy

When an Ivy completion list is active, a press of either Smart Key on a completion candidate
selects that one and exits the minibuffer.

E.2.4 Smart Key - Treemacs

Treemacs is an add-on Emacs package that offers a fixed, per-frame, graphical window for
hierarchically browsing and operating upon directories, files and programming tags within
files. Use the Emacs package manager to install it and then invoke it with {M-x treemacs
RET} and quit with {q}.

Treemacs items may be dragged with the Action Key to other windows for display. See
Section 3.7.5.4 [Displaying Items]|, page 20.

Appendix E: Smart Key Reference 139

When in a Treemacs file browser buffer:
ACTION KEY or ASSIST KEY

(1) on or to the left of an entry icon, run the treemacs TAB command
to expand or collapse the entry;

(2) elsewhere within an entry line, display the item, which may be a
directory, for editing, normally in another window;

(3) at the end of an entry line: if an Action Key press, invoke
action-key-eol-function, typically to scroll up proportionally;
if an Assist Key press, invoke assist-key-eol-function, typically
to scroll down proportionally;

(4) at the end of the first or last line of the buffer, quit this
Treemacs invocation.

E.2.5 Smart Key - Dired Sidebar Mode

Dired-sidebar is an add-on Emacs package that puts dired in a sidebar and optionally
integrates with various other packages. Use the Emacs package manager to install it and
then invoke it with {M-x dired-sidebar-toggle-sidebar RET} and quit with {q}.

When in a dired-sidebar buffer:
ACTION KEY or ASSIST KEY

(1) within an entry line, the item is displayed for editing,
normally in another window, or if it is a directory and
‘dired-sidebar-cycle-subtree-on-click’ is t it will expand
and collapse the entry

(2) at the end of an entry line: invoke ‘action-key-eol-function’,
typically to scroll up proportionally, if an Action Key press; invoke
‘assist-key-eol-function’, typically to scroll down proportionally,
if an Assist Key press;

(3) on the first line of the buffer (other than the end of line),
dired is run on the current directory of this dired-sidebar;

(4) at the end of the first or last line of the buffer,
this dired-sidebar invocation is hidden.

E.2.6 Smart Key - Emacs Pushbuttons

When over an Emacs pushbutton:
ACTION KEY
Performs the button action
ASSIST KEY
Displays the help text for the button, if any.

E.2.7 Smart Key - Argument Completion

When prompting for a Hyperbole argument, a press in the minibuffer:
ACTION KEY
Accepts the current minibuffer argument.
ASSIST KEY
Offers completions for the current minibuffer argument.

Appendix E: Smart Key Reference 140

When reading a Hyperbole menu item or an argument with completion:

ACTION KEY
Returns the value selected at point if any, else nil. If the
value is the same as the contents of the minibuffer, this value is
accepted as the argument for which the minibuffer is presently
prompting; otherwise, the minibuffer is erased and the value is
inserted there, for inspection by the user.

ASSIST KEY
Displays Hyperbole menu item help when an item is selected.

E.2.8 Smart Key - ID Edit Mode

If in ID Edit mode (a package within InfoDock, not included in
Hyperbole, that supports rapid marking, killing, copying, yanking and
display-management):
ACTION KEY or ASSIST KEY
Yanks (pastes) last selected region at point.

E.2.9 Smart Key - Emacs Cross-references (Xrefs)

When over an Emacs cross-reference:
ACTION KEY
Follows the cross-reference to its source definition in another window.
ASSIST KEY
Displays the cross-reference definition in another window but
stays in the current window.

E.2.10 Smart Key - Smart Scrolling

When pressed at the end of a line but not the end of a buffer:
ACTION KEY

Calls the function given by action-key-eol-function whose
default value is smart-scroll-up. This scrolls up according
to the value of smart-scroll-proportional. If
smart-scroll-proportional is nil or if point is on the top
window line, it scrolls up (forward) a windowful. Otherwise, it tries
to bring the current line to the top of the window, leaving point at
the end of the line and returning t if scrolled, nil if not. To disable
this behavior entirely, evaluate this line:
(customize-set-variable 'action-key-eol-function #'ignore)

Appendix E: Smart Key Reference 141

ASSIST KEY
Calls the function given by assist-key-eol-function whose
default value is smart-scroll-down. This scrolls down according
to the value of smart-scroll-proportional. If
smart-scroll-proportional is nil or if point is on the bottom
window line, it scrolls down (backward) a windowful. Otherwise, it tries
to bring the current line to the bottom of the window, leaving point at
the end of the line and returning t if scrolled, nil if not. To disable
this behavior entirely, evaluate this line:
(customize-set-variable 'assist-key-eol-function #'ignore)

E.2.11 Smart Key - Smart Menus

Smart Menus are an older in-buffer menu system that worked on dumb terminals and pre-
dated Emacs’ own dumb terminal menu support. They are included with InfoDock (which
is no longer maintained) and are not available separately. They are not a part of Hyperbole
and are not necessary for its use.

When pressed on a Smart Menu item (this is an older in-buffer menu
system that pre-dates Emacs’ own menus):
ACTION KEY
Activates the item.
ASSIST KEY
Displays help for the item.

If the Smart Menu package (part of InfoDock) has been loaded and
‘hkey-always-display-menu’ is non-nil:
ACTION KEY or ASSIST KEY
Pops up a window with a Smart Menu of commands.
The menu displayed is selected by (smart-menu-choose-menu).

E.2.12 Smart Key - Dired Mode

If pressed within a dired-mode (directory editor) buffer:
ACTION KEY
(1) within an entry line, the selected file/directory is displayed

for editing, normally in another window but if an entry has been dragged

for display in another window, then this entry is displayed in the current

window (DisplayHere minor mode is shown in the mode-line; use {g} to
disable it)
(2) on a dired header line (other than the end of line):

(a) within the leading whitespace, then if any deletes are to be
performed, they are executed after user verification; otherwise,
nothing is done;

(b) otherwise, dired is run in another window on the ancestor directory
of the current directory path up through the location of point; if
point is on the first character, then the / root directory is used.

(3) on or after the last line in the buffer, this dired invocation is quit.

Appendix E: Smart Key Reference 142

ASSIST KEY
(1) on a ~ character, all backup files in the directory are marked for deletion;
(2) on a # character, all auto-save files in the directory are marked for
deletion;
(3) anywhere else within an entry line, the current entry is marked for deletion;
(4) on or after the last line in the buffer, all delete marks on all entries are
undone.

E.2.13 Smart Key - Magit Mode

If pressed within a Magit buffer and not on a button:
ACTION KEY
(1) on the last line, quit from the magit mode ({q} key binding);
(2) at the end of a line, scroll up a windowful;
(3) in a magit-status-mode buffer on a merge conflict
marker, keep either the upper, both or the lower version of
the conflict. See also [smerge], page 28.
(4) on an initial read-only header line, cycle visibility of diff sections;
(5) anywhere else, hide/show the thing at point ({TAB} key binding)
unless that does nothing in the mode, then jump to the thing at point
({RET} key binding) but display based on the value of
hpath:display-where.
ASSIST KEY
(1) on the last line, quit from the magit mode ({q} key binding);
(2) at the end of a line, scroll down a windowful,
(3) on an initial read-only header line, cycle visibility of all sections;
(4) anywhere else, jump to the thing at point ({RET} key binding)
but display based on the value of hpath:display-where."

3
4

E.2.14 Smart Key - Delimited Things

In a programming or markup language buffer, when pressed/clicked at
the start or end of a delimited thing (including lists, comments,
strings, arrays/vectors, sets, functions and markup pair tags in a
markup language), and not at the end of a line:
ACTION KEY
Marks the thing for editing.
ASSIST KEY
Marks and kills the thing for yanking elsewhere.
Note that the press must be on the first character of the delimiter of
the thing.

E.2.15 Smart Key - Hyperbole Buttons

When pressed on a Hyperbole button:
ACTION KEY
Activates the button.
ASSIST KEY
Displays help for the button, typically a summary of its
attributes.

Appendix E: Smart Key Reference 143

E.2.16 Smart Key - View Mode

If pressed within a buffer in View minor mode:
ACTION KEY
Scrolls the buffer forward a windowful; if last line is visible, move to the
last line. If at the last line of the buffer, instead quits from view mode.
ASSIST KEY
Scrolls the buffer backward a windowful.

E.2.17 Smart Key - Helm Mode

Because of the way helm is written, you may need a modified version of helm for these
Smart Key actions to work. Try them in your own version and if there are any issues,
install helm from github.com/rswgnu/helm.

If pressed within a buffer in helm major mode:
ACTION KEY

(1) at the end of the buffer, quits from helm and exits the minibuffer;

(2) on a candidate line, performs the candidate’s first action and
remains in the minibuffer;

(3) on the top, fixed header line, toggles display of the selected
candidate’s possible actions;

(4) on an action list line, performs the action after exiting the
minibuffer;

(5) on a source section header, moves to the next source section or
first if on last;

(6) on a candidate separator line, does nothing;

(7) in the minibuffer window, ends the helm session and performs the
selected item’s action.

ASSIST KEY

(1) at the end of the buffer, quits from helm and exits the minibuffer;

(2) on a candidate line, display’s the candidate’s first action
and remains in the minibuffer;

(3) on the top, fixed header line, toggles display of the
selected candidate’s possible actions;

(4) on an action list line, performs the action after exiting the
minibuffer;

(5) on a source section header, moves to the previous source
section or last if on first;

(6) on a candidate separator line, does nothing;

(7) in the minibuffer window, ends the helm session and performs
the selected item’s action.

Appendix E: Smart Key Reference 144

E.2.18 Smart Key - ERT Results Mode

When in an Emacs Regression Test (ERT) results buffer:
ACTION KEY
Filters ert-results-mode test results entries to those
matching the result status of the entry at point. Does nothing
if there is no entry at point.

With point on any of the statistics lines in the top section of the
results buffer, does the following;:
Selector: - toggles showing/hiding all test results
Passed: - shows passed tests only
Failed: - shows failed tests only
Skipped: - shows skipped tests only
Total: - shows all tests
ASSIST KEY
Displays help documentation for the ert-results-mode test at point,
if any. Triggers an error if there is no test result at or before point."

There are also drag actions that work on delimited things. If no
region is selected, when the Action Mouse Key is dragged from a thing
delimiter to another location, it copies the thing and yanks it at the
new location. Similarly, the Assist Mouse Key kills the thing at its
original location and yanks it at the new location.

E.2.19 Smart Key - Occurrence Matches

When pressed within an occur-mode, moccur-mode or amoccur-mode buffer:
ACTION KEY or ASSIST KEY
Jumps to the source buffer and line of the current occurrence.

E.2.20 Smart Key - The Koutliner

When pressed within a Hyperbole Koutliner buffer (kotl-mode):
ACTION KEY

(1) at the end of the buffer, uncollapses and unhides all cells in
the view;

(2) within a cell, if its subtree is hidden then shows it,
otherwise hides it;

(3) between cells or within the read-only indentation region to the
left of a cell, begins creation of a klink to some other
outline cell; press the Action Key twice on another cell to
select the link referent cell;

(4) anywhere else, scrolls up a windowful.

Appendix E: Smart Key Reference 145

ASSIST KEY

(1) at the end of the buffer, collapses all cells and hides all
non-level-one cells;

(2) on a header line but not at the beginning or end, displays the
properties of each following cell in the koutline, starting
with the cell at point;

(3) between cells or within the read-only indentation region to the
left of a cell, prompts to move one tree to a new location in
the outline; press the Action Key twice to select the tree to
move and where to move it;

(4) anywhere else, scrolls down a windowful.

E.2.21 Smart Key - Flymake Mode

When pressed within a line of the flymake linter list of issues buffer:
ACTION KEY
jumps to the source buffer line and point where the issue occurred
ASSIST KEY
displays/pulses, but does not jump to, the source buffer line and point
where the issue occurred

The flymake library comes with only a pulldown menu and no other source buffer key
bindings, forcing you to first display the list of issues and then find the issue of interest
and jump to it. Hyperbole adds a source buffer keymap on the {C-c C-1} prefix that lets
you navigate and remediate flymake issues exclusively in the source buffer. It also makes it
more convenient to jump to the issue listing buffer, to toggle f1lymake-mode on and off and
to toggle whether the movement between issue commands wrap around at the end of the
buffer or not.

{C-c C-1 4}
flymake-show-buffer-diagnostics - Display list of flymake issues with this
buffer.

{C-cC-1¢g}
hsys-flymake-display-this-or-next-issue - Display issue at point or if no
issue there, move to next issue location and display it.

{C-c C-11i}
hsys-flymake-insert-issue—-at-point - Insert issue at point on a separate
new line below the current line so that its text can be utilized.

{C-c C-11}
flymake-switch-to-log-buffer - For developers of new language flymake
backends: Jump to a log of internal flymake processing.

{C-c C-1 n}
flymake-goto-next-error - In source buffer, move to next flymake issue.
Wrap around at the end of the buffer if flymake-wrap-around is non-nil. Re-
peat with {n}.

Appendix E: Smart Key Reference 146

{C-c C-1 p}
flymake-goto-prev-error - In source buffer, move to previous flymake issue.
Wrap around at the beginning of the buffer if flymake-wrap-around is non-nil.
Repeat with {p}.

{C-c C-1 s}
flymake-start - Force a run of flymake to update issues with the current
buffer.

{C-c C-1 t}
hsys-flymake-toggle - Toggle whether minor mode flymake-mode is enabled
in the current buffer.

{C-c C-1 w}
hsys-flymake-toggle-wraparound - Toggle whether next and previous issue
commands wrap around at the end and beginning of the buffer. Repeat with

{w}.
E.2.22 Smart Key - RDB Mode

If pressed within an rdb-mode buffer which manipulates in-memory,
relational databases (part of InfoDock):
ACTION KEY
(1) on the name of a relation, the relation’s full table is shown;
(2) on an attribute name, all attribute columns aside from this one
are removed from the relation display;
(3) to the left of a tuple (row), the tuple is removed from the display;
(4) on an attribute value, all tuples (rows) which do not contain
the selected attribute value are removed from the current table display;
(5) on or after the last line in the buffer, the current database is redisplayed;
(6) anywhere else (except the end of a line), the last command is undone."

ASSIST KEY
(1) on the name of a relation, the relation is removed from the display;
(2) on an attribute name, the attribute column is removed from the relation
display;
(3) to the left of a tuple (row), the tuple is removed from the display;
(4) on an attribute value, all tuples with the same attribute value are
removed from the display."

E.2.23 Smart Key - Help Buffers

When pressed at the end of a Help buffer:

ACTION KEY or ASSIST KEY
Restores the window configuration prior to the help display.

E.2.24 Smart Key - Custom Mode

When pressed within Custom-mode for editing customizations: ACTION KEY (1) on the
last line of the buffer, exit Custom mode, potentially prompting to save any changes; (2) at
the end of any other line, scroll the window down down a windowful; (3) if a mouse event on

Appendix E: Smart Key Reference 147

a widget, activate the widget or display a menu; (4) anywhere else, execute the command
bound to RET. ASSIST KEY (1) on the last line of the buffer, exit Custom mode, potentially
prompting to save any changes; (2) at the end of any other line, scroll the window down
down a windowful; (3) if a mouse event on a widget, activate the widget or display a menu;
(4) anywhere else, execute the command bound to RET.

E.2.25 Smart Key - Bookmark Mode

Bookmark-bmenu-mode lists existing per-user Emacs bookmarks, which each link to a par-
ticular file location.

When pressed on a bookmark-bmenu-mode entry line:
ACTION KEY
Jumps to the file point linked to by the bookmark.
ASSIST KEY

Shows what the Action Key does in this context.

E.2.26 Smart Key - Pages Directory Mode

Pages-directory-mode is used in special buffers that contain title lines extracted from files con-
sisting of titled, page-delimited contents, e.g. Info files.

When pressed on a pages-directory-mode entry line:
ACTION KEY
Jumps to the associated line in the pages file that contains the entry.

ASSIST KEY
Jumps to the associated line in the pages file that contains the entry.

E.2.27 Smart Key - Python Source Code

When the Jedi identifier server or the OO-Browser has been loaded and the press is
within a Python buffer:
ACTION KEY or ASSIST KEY
Jumps to the definition of the selected Python construct:
(1) on an ‘import’ line, the referent is displayed;
(2) within a method declaration, its definition is displayed;
(3) on a class name, the class definition is shown;
(4) on a unique identifier reference, its definition is shown (when
possible).

When pressed within a Python source code file (without the OO-Browser):
ACTION KEY
Jumps to the definition of the selected Python identifier,
assuming the identifier is found within an "etags" generated
tags file within the current directory or any of its ancestor
directories.
ASSIST KEY
Jumps to the next tag matching an identifier at point.

Appendix E: Smart Key Reference 148

E.2.28 Smart Key - C Source Code

When pressed within a C source code file:
ACTION KEY

Jumps to the definition of a selected C construct:

(1) on a #include statement, the include file is displayed;
this looks for include files using the directory lists
‘smart-c-cpp-include-path’ and
‘smart-c-include-path’;

(2) on a C identifier, the identifier definition is displayed,
assuming the identifier is found within an "etags" generated
tags file within the current directory or any of its ancestor
directories;

(3) if ‘smart-c-use-lib-man’ is non-nil (see its documentation),
the C identifier is recognized as a library symbol, and a man
page is found for the identifier, then the man page is
displayed.

ASSIST KEY
Jumps to the next tag matching an identifier at point.

E.2.29 Smart Key - C++ Source Code

When the OO-Browser has been loaded and the press is within a C++
buffer:
ACTION KEY or ASSIST KEY

Jumps to the definition of the selected C++ construct via

OO-Browser support.

(1) on a #include statement, the include file is displayed;
this looks for include files using the directory lists
‘smart-c-cpp-include-path’ and
‘smart-c-include-path’;

(2) within a method definition before the opening brace, its
declaration is displayed;

(3) within a method declaration, its definition is displayed;

(4) on a class name, the class definition is shown;

(5) on a member reference (past any :: scoping operator), the
member definition or a listing of possible definitions or a
matching declaration (if no definitions exist within the
Environment) is shown;

(6) on a global variable or function identifier, its definition is
shown.

Appendix E: Smart Key Reference

When pressed within a C++ source code file (without the OO-Browser):
ACTION KEY

Jumps to the definition of the selected C++ construct:

(1) on a #include statement, the include file is displayed;
this looks for include files using the directory lists
‘smart-c-cpp-include-path’ and
‘smart-c-include-path’;

(2) on a C++ identifier, the identifier definition is displayed,
assuming the identifier is found within an "etags" generated
tags file in the current directory or any of its ancestor
directories;

(3) if ‘smart-c-use-lib-man’ is non-nil (see its documentation),
the C++ identifier is recognized as a library symbol, and a man
page is found for the identifier, then the man page is
displayed.

ASSIST KEY
Jumps to the next tag matching an identifier at point.

E.2.30 Smart Key - Assembly Source Code

When pressed within an assembly source code file:
ACTION KEY

Jumps to the definition of the selected assembly construct:

(1) on an include statement, the include file is displayed;
this looks for include files using the directory list
‘smart-asm-include-path’;

(2) on an identifier, the identifier definition is displayed,
assuming the identifier is found within an "etags" generated
tags file within the current directory or any of its ancestor
directories.

ASSIST KEY
Jumps to the next tag matching an identifier at point.

E.2.31 Smart Key - Lisp Source Code

When pressed on a Lisp symbol within any of these types of buffers
(Lisp code, debugger, compilation, *Warnings*, *Flymake log* and *Flymake
diagnostics, help or change-log-mode buffers) on an Emacs Lisp bound
identifier:
ACTION KEY
Jumps to the definition of any selected Lisp construct. This includes
Hyperbole implicit button type and action type references. If on an
Emacs Lisp require, load, or autoload clause and the (find-library)
function is defined, jumps to the library source, if possible.
ASSIST KEY
Jumps to the next tag matching an identifier at point or if
the identifier is an Emacs Lisp symbol, then this displays the
documentation for the symbol.

149

Appendix E: Smart Key Reference 150

E.2.32 Smart Key - Java Source Code

When the OO-Browser has been loaded and the press is within a Java
buffer:
ACTION KEY or ASSIST KEY
Jumps to the definition of the selected Java construct:
(1) within a commented @see cross-reference, the referent is
displayed;
(2) on a package or import statement, the referent is
displayed; this looks for referent files using the directory
list ‘smart-java-package-path’;
(3) within a method declaration, its definition is displayed;
(4) on a class name, the class definition is shown;
(5) on a unique identifier reference, its definition is shown (when
possible).

When pressed within a Java source code file (without the OO-Browser):
ACTION KEY

Jumps to the definition of the selected Java construct:

(1) within a commented @see cross-reference, the referent is
displayed;

(2) on a package or import statement, the referent is
displayed; this looks for referent files using the directory
list ‘smart-java-package-path’;

(3) on a Java identifier, the identifier definition is displayed,
assuming the identifier is found within an "etags" generated
tags file within the current directory or any of its ancestor
directories.

ASSIST KEY
Jumps to the next tag matching an identifier at point.

E.2.33 Smart Key - JavaScript Source Code

When pressed within a JavaScript source code file:

ACTION KEY
Jumps to the definition of the selected JavaScript identifier,
assuming the identifier is found within an "etags" generated
tags file within the current directory or any of its ancestor
directories.

ASSIST KEY
Jumps to the next tag matching an identifier at point.

Appendix E: Smart Key Reference

E.2.34 Smart Key - Objective-C Source Code

When the OO-Browser has been loaded and the press is within a
Objective-C buffer:
ACTION KEY or ASSIST KEY

Jumps to the definition of the selected Objective-C construct via

OO-Browser support.

(1) on a #import or #include statement, the include file is
displayed; this looks for include files using the directory
lists ‘objc-cpp-include-path’ and
‘objc-include-path’;

(2) within a method declaration, its definition is displayed;

(3) on a class name, the class definition is shown;

(4) on a member reference (past any :: scoping operator), the
member definition or a listing of possible definitions is
shown;

(5) on a global variable or function identifier, its definition
is shown.

When pressed within an Objective-C source code file (without the
OO-Browser):
ACTION KEY

Jumps to the definition of the selected Objective-C construct:

(1) on a #import or #include statement, the include file is
displayed; this looks for include files using the directory
lists ‘objc-cpp-include-path’ and
‘objc-include-path’;

(2) on an Objective-C identifier, the identifier definition is
displayed, assuming the identifier is found within an "etags"
generated tags file in the current directory or any of its
ancestor directories;

(3) if ‘smart-c-use-lib-man’ is non-nil (see its documentation),
the Objective-C identifier is recognized as a library symbol,
and a man page is found for the identifier, then the man page
is displayed.

ASSIST KEY
Jumps to the next tag matching an identifier at point.

E.2.35 Smart Key - Fortran Source Code

When pressed within a Fortran source code file:
ACTION KEY or ASSIST KEY
If on an identifier, the identifier definition (or a definition in
which the identifier appears) is displayed, assuming the identifier
is found within an "etags" generated tags file in the current
directory or any of its ancestor directories.

151

Appendix E: Smart Key Reference 152

E.2.36 Smart Key - Identifier Menu Mode

This works only for identifiers defined within the same source file in
which they are referenced. It requires either Emacs’ imenu library
and it requires that an index of identifiers has been built for the
current buffer. Other handlers handle identifier references and
definitions across multiple files.

When pressed on an identifier name after an identifier index has been generated:
ACTION KEY
Jumps to the source definition within the current buffer of the identifier at point.
ASSIST KEY
Prompts with completion for an identifier defined within the buffer and then jumps
to the its source definition.

E.2.37 Smart Key - Calendar Mode

When pressed within a calendar-mode buffer:
ACTION KEY
(1) at the end of the buffer, the calendar is scrolled forward 3
months;
(2) to the left of any dates on a calendar line, the calendar is
scrolled backward 3 months;
(3) on a date, the diary entries for the date, if any, are
displayed.
ASSIST KEY
(1) at the end of the buffer, the calendar is scrolled backward 3
months;
(2) to the left of any dates on a calendar line, the calendar is
scrolled forward 3 months;
(3) anywhere else, all dates with marking diary entries are marked
in the calendar window.

E.2.38 Smart Key - Man Page Apropos

When pressed within a man page apropos buffer or listing:
ACTION KEY
(1) on a UNIX man apropos entry, the man page for that entry is
displayed in another window;
(2) on or after the last line, the buffer in the other window is
scrolled up a windowful.
ASSIST KEY
(1) on a UNIX man apropos entry, the man page for that entry is
displayed in another window;
(2) on or after the last line, the buffer in the other window is
scrolled down a windowful.

Appendix E: Smart Key Reference

E.2.39 Smart Key - Emacs Outline Mode

If pressed within an outline-mode buffer or when no other context is matched
and outline-minor-mode is enabled:
ACTION KEY

Collapses, expands, and moves outline entries.

(1) after an outline heading has been cut via the Action Key,
pastes the cut heading at point;

(2) at the end of the buffer, shows all buffer text;

(3) at the beginning of a heading line, cuts the headings subtree
from the buffer;

(4) on a header line but not at the beginning or end of the line,
if the headings subtree is hidden, shows it, otherwise hides
it;

(5) at the end of a line, invokes action-key-eol-function,
typically to scroll up a windowful.

ASSIST KEY

(1) after an outline heading has been cut via the Action Key,
allows multiple pastes throughout the buffer (the last paste
should be done with the Action Key, not the Assist Key);

(2) at the end of the buffer, hides all bodies in the buffer;

(3) at the beginning of a heading line, cuts the current heading
(sans subtree) from the buffer;

(4) on a header line but not at the beginning or end, if the
heading body is hidden, shows it, otherwise hides it;

(5) at the end of a line, invokes assist-key-eol-function,
typically to scroll down a windowful.

E.2.40 Smart Key - Info Manuals

If pressed within an Info manual node:
ACTION KEY

(1) on the first line of an Info Menu Entry or Cross Reference, the
referenced node is displayed;

(2) on the Up, Next, or Previous entries of a Node Header (first
line), the referenced node is displayed;

(3) on the File entry of a Node Header (first line), the Top node
within that file is displayed;

(4) at the end of the current node, the next node is displayed
(this descends subtrees if the function (Info-global-next)
is bound);

(5) anywhere else (e.g. at the end of a line), the current node
is scrolled up a windowful.

153

Appendix E: Smart Key Reference

ASSIST KEY

(1) on the first line of an Info Menu Entry or Cross Reference, the
referenced node is displayed;

(2) on the Up, Next, or Previous entries of a Node Header (first
line), the last node in the history list is found;

(3) on the File entry of a Node Header (first line), the DIR
root-level node is found;

(4) at the end of the current node, the previous node is displayed
(this returns from subtrees if the function (Info-global-prev)
is bound);

(5) anywhere else (e.g. at the end of a line), the current node
is scrolled down a windowful.

Use {s} within an Info manual to search for any concept that interests you.

E.2.41 Smart Key - Email Readers

If pressed within a Hyperbole-supported mail reader (defined by
‘hmail:reader’) or a mail summary (defined by ‘hmail:lister’) buffer:
ACTION KEY
(1) in a msg buffer within the first line of a message or at the
end of a message, the next undeleted message is displayed;
(2) in a msg buffer within the first line of an Info cross
reference, the referent is displayed;
(3) anywhere else within a msg buffer, the window is scrolled up
one windowful;
(4) in a msg summary buffer on a header entry, the message
corresponding to the header is displayed in the msg window;
(5) in a msg summary buffer, on or after the last line, the
messages marked for deletion are expunged.

ASSIST KEY

(1) in a msg buffer within the first line or at the end of a
message, the previous undeleted message is displayed;

(2) in a msg buffer within the first line of an Info cross
reference, the referent is displayed;

(3) anywhere else within a msg buffer, the window is scrolled down
one windowful;

(4) in a msg summary buffer on a header entry, the message
corresponding to the header is marked for deletion;

(5) in a msg summary buffer on or after the last line, all messages
are marked undeleted.

154

Appendix E: Smart Key Reference

E.2.42 Smart Key - GNUS Newsreader

If pressed within the Gnus newsgroups listing buffer:
ACTION KEY

(1) on a GNUS-GROUP line, that newsgroup is read;

(2) if ‘gnus-topic-mode’ is active, and on a topic line, the topic is
expanded or collapsed as needed;

(3) to the left of any GNUS-GROUP line, within any of the
whitespace, the current group is unsubscribed or resubscribed;

(4) at the end of the GNUS-GROUP buffer after all lines, the
number of waiting messages per group is updated.

ASSIST KEY

(1) on a GNUS-GROUP line, that newsgroup is read;

(2) if ‘gnus-topic-mode’ is active, and on a topic line, the topic is
expanded or collapsed as needed;

(3) to the left of any GNUS-GROUP line, within any of the
whitespace, the user is prompted for a group name to subscribe
or unsubscribe to;

(4) at the end of the GNUS-GROUP buffer after all lines, the
newsreader is quit.

If pressed within a Gnus newsreader subject listing buffer:
ACTION KEY
(1) on a GNUS-SUBJECT line, that article is read, marked deleted,
and scrolled forward;
(2) at the end of the GNUS-SUBJECT buffer, the next undeleted
article is read or the next group is entered.

ASSIST KEY
(1) on a GNUS-SUBJECT line, that article is read and scrolled
backward;
(2) at the end of the GNUS-SUBJECT butffer, the group is exited and
the user is returned to the group listing buffer.

If pressed within a Gnus newsreader article buffer:
ACTION KEY
(1) on the first line or at the end of an article, the next unread
message is displayed;
(2) on the first line of an Info cross reference, the referent is
displayed;
(3) anywhere else, the window is scrolled up a windowful.

ASSIST KEY
(1) on the first line or end of an article, the previous message is
displayed;
(2) on the first line of an Info cross reference, the referent is
displayed;
(3) anywhere else, the window is scrolled down a windowful.

155

Appendix E: Smart Key Reference 156

E.2.43 Smart Key - Buffer Menus

If pressed within a listing of buffers (Buffer-menu-mode):
ACTION KEY

(1) on the first column of an entry, the selected buffer is marked
for display;

(2) on the second column of an entry, the selected buffer is marked
for saving;

(3) anywhere else within an entry line, all saves and deletes are
done, and selected buffers are displayed, including the one
just clicked on (if in the OO-Browser, only the selected buffer
is displayed);

(4) on or after the last line in the buffer, all saves and deletes
are done.

ASSIST KEY
(1) on the first or second column of an entry, the selected buffer
is unmarked for display and for saving or deletion;
(2) anywhere else within an entry line, the selected buffer is
marked for deletion;
(3) on or after the last line in the buffer, all display, save, and
delete marks on all entries are undone.

If pressed within an interactive buffer menu (ibuffer-mode):
ACTION KEY

(1) on the first or second column of an entry, the selected buffer is
marked for display;

(2) anywhere else within an entry line, all saves and deletes are done, and
selected buffers are displayed, including the one just clicked on (if
within the OO-Browser user interface, only the selected buffer is
displayed);

(3) on the first or last line in the buffer, all deletes are done.

ASSIST KEY
(1) on the first or second column of an entry, the selected buffer is unmarked
for display or deletion;
(2) anywhere else within an entry line, the selected buffer is marked for
deletion;
(3) on the first or last line in the buffer, all display, save, and delete
marks on all entries are undone.

E.2.44 Smart Key - Tar File Mode

If pressed within a tar-mode buffer:
ACTION KEY
(1) on an entry line, the selected file/directory is displayed for
editing in the other window;
(2) on or after the last line in the buffer, if any deletes are to
be performed, they are executed after user verification;
otherwise, this tar file browser is quit.

Appendix E: Smart Key Reference 157

ASSIST KEY
(1) on an entry line, the current entry is marked for deletion;
(2) on or after the last line in the buffer, all delete marks on
all entries are undone.

E.2.45 Smart Key - Man Pages

If pressed on a cross reference within a man page entry section labeled
NAME, SEE ALSO, or PACKAGES USED, or within a man page C routine
specification (see ‘smart-man-c-routine-ref’) and the man page buffer
has either an attached file or else a man-path local variable
containing its pathname:
ACTION KEY or ASSIST KEY
Displays the man page or source code for the cross reference.

E.2.46 Smart Key - WWW URLs

If pressed on a World-Wide Web universal resource locator (URL):
ACTION KEY
Displays the referent for the URL at point using the web browser
given by the variable, browse-url-browser-function. Adjust
this setting with the Cust/URL-Display {C-h h ¢ u} menu.
ASSIST KEY
Displays help for the ACTION KEY.

E.2.47 Smart Key - HyRolo Match Buffers

If pressed within the HyRolo search results buffer:
ACTION KEY or ASSIST KEY
On an entry, the entry is displayed for editing in its source buffer.
On a file header, the file location is displayed for editing.

E.2.48 Smart Key - Image Thumbnails

If pressed within a Dired Image Thumbnail buffer:
ACTION KEY
Selects the chosen thumbnail and scales its image for display in another Emacs window.
ASSIST KEY
Selects thumbnail and uses the external viewer named by image-dired-external-
viewer
to display it.

E.2.49 Smart Key - Gomoku Game

If pressed within a Gomoku game buffer:
ACTION KEY
Makes a move to the selected space.

ASSIST KEY
Takes back a prior move made at the selected space.

Appendix E: Smart Key Reference 158

E.2.50 Smart Key - The OO-Browser

If pressed within an OO-Browser implementors, elements or OOBR-FTR tags
buffer after an OO-Browser Environment has been loaded:
ACTION KEY
Jumps to the definition of the item at point.
ASSIST KEY
Displays help for the Action Key context at point.

When pressed within an OO-Browser listing window:
ACTION KEY

(1) in a blank buffer or at the end of a buffer, browser help
information is displayed in the viewer window;

(2) on a default class name, the statically defined instances of
the default class are listed;

(3) at the beginning of a (non-single char) class name, the class’
ancestors are listed;

(4) at the end of an entry line, the listing is scrolled up;

(5) on the ‘...", following a class name, point is moved to the
class descendency expansion;

(6) before an element entry, the element’s implementors are
listed;

(7) anywhere else on an entry line, the source is displayed for
editing.

ASSIST KEY

(1) in a blank buffer, a selection list of buffer files is
displayed;

(2) on a default class name, the statically defined instances of
the default class are listed;

(3) at the beginning of a (non-single char) entry, the class’
descendants are listed;

(4) at the end of an entry line, the listing is scrolled down;

(5) on the ‘...", following a class name, point is moved to the
class expansion;

(6) anywhere else on a class entry line, the class’ elements are
listed;

(7) anywhere else on an element line, the element’s implementors
are listed;

(8) on a blank line following all entries, the current listing
buffer is exited.

When pressed within the OO-Browser Command Help Menu Buffer:
ACTION KEY
Executes an OO-Browser command whose key binding is at point.
ASSIST KEY
Displays help for an OO-Browser command whose key binding is at
point.

Appendix E: Smart Key Reference 159

When pressed on an identifier within an OO-Browser source file:
ACTION KEY
Tries to display the identifier definition.
ASSIST KEY
Does nothing.

E.2.51 Smart Key - Todotext Mode

todotxt-mode is an add-on package for editing todo.txt files using the todotxt-format. For
the file format see http://todotxt.org/.

If pressed within a Todotext mode buffer:
ACTION KEY
(1) at the end of buffer, bury the buffer.
(2) on a todo item, toggle the completion status of the todo item
ASSIST KEY
(1) at the end of buffer, archive all completed todo items
(2) on a todo item, edit the item

E.2.52 Smart Key - Default Context

Finally, if pressed within an unrecognized context:

ACTION KEY
Runs the function stored in action-key-default-function.
By default, it just displays an error message. Set it to
hyperbole if you want it to display the Hyperbole
minibuffer menu or hyperbole-popup-menu to popup the
Hyperbole menubar menu.

ASSIST KEY
Runs the function stored in assist-key-default-function.
By default, it just displays an error message. Set it to
hkey-summarize if you want it to display a summary of
Smart Key behavior.

160

Appendix F Suggestion or Bug Reporting

If you find any errors in Hyperbole’s operation or documentation, feel free to report them
to <bug-hyperbole@gnu.org>. Be sure to use the {C-h h m r} Msg/Report-Hypb-Bug mini-
buffer menu item whenever you send a message to this address since that command will
insert important system version information for you.

If you use Hyperbole mail or news support (see Section 4.7.6 [Buttons in Mail], page 45),
a press of your Action Key on the Hyperbole mail list address will insert a description of
your Hyperbole configuration information into your outgoing message, so that you do not
have to type it. Otherwise, be sure to include the version numbers of your editor, Hyperbole
and your window system. Your Hyperbole version number can be found in the top-level
Hyperbole menu.

Below are some tips on how best to structure requests and discussion messages. If you
share information about your use of Hyperbole with others, it will promote broader use and
development of Hyperbole.

e Always use your Subject lines to state the position that your message takes on the
topic that it addresses.

For example, write: “Subject: Typo in top-level Hyperbole minibuffer menu.”

rather than: “Subject: Hyperbole bug”

e Statements end with periods, questions with question marks (typically), and high en-
ergy, high impact declarations with exclamation points. These simple rules make all
e-mail communication much easier for recipients to handle appropriately.

e Question messages should normally include your Hyperbole and Emacs version num-
bers and should clearly explain your problem and surrounding issues. Otherwise, it is
difficult for anyone to answer your question. (Your top-level Hyperbole menu shows its
version number and {M-x emacs-version RET} gives the other.)

e If you ask questions, you should consider adding to the discussion by telling people the
kinds of work you are doing or contemplating doing with Hyperbole. In this way, the
list is not overrun by messages that ask for, but provide no information.

If you have suggestions on how to improve Hyperbole, send them to <hyperbole-
users@gnu.com> ({C-h h m c} minibuffer menu item Msg/Compose-Hypb-Mail). Here are
some issues you might address:

e What did you like and dislike about the system?

e What kinds of tasks, if any, does it seem to help you with?

e What did you think of the Emacs-based user interface?

e How was the Hyperbole Manual and other documentation?

e Was the setup trivial, average or hard?

e What areas of Hyperbole would you like to see expanded/added?
e How does it compare to other hypertext tools you have used?

e Was it easy or difficult to create your own types? Why?

e Did you get any use out of the external system encapsulations?

161

Appendix G Questions and Answers

1. As I discover the Zen of Hyperbole, will I become so enamored of its power that I lose
all control of my physical faculties?

This other-worldly reaction is of course an individual matter. Some people have can-
celed meditation trips to the Far East after discovering that pressing the Action Key
in random contexts serves a similar purpose much more cheaply. We have not seen
anyone’s mind turn to jelly but with the cognition Hyperbole saves you, you might just
grow a second one. Eventually, you will be at peace and will understand that there is
no adequate description of Hyperbole. Just let it flow through you.

Ok, joking aside, now that we have your attention, here are some serious questions and
answers.

2. Isn’t Org-mode the same as Hyperbole?
No, they offer very different capabilities when you compare them a bit more deeply.
In fact, it makes sense to use them together and they are highly compatible. The only
overlap we see is that Org-mode has a more limited kind of hyperlinks and offers some
BBDB integration as Hyperbole does. For a list of some differences, see: https://
www.emacswiki.org/emacs/Hyperbole.

Org-mode offers traditional Emacs outlining, todo list management, agenda and di-
ary management, so it is very complementary to Hyperbole. It did not exist when
Hyperbole was first developed.

Smart Key support for Org-mode is already in Hyperbole. Use the hsys-org-enable-
smart-keys customization variable to control the Smart Keys and {M-RET} when in
Org-mode with hyperbole-mode active. t enables Smart Key support everywhere. The
symbol, :buttons, is the default; it means the Smart Keys are active only when point
is within a Hyperbole button. A nil value means no Smart Key support; Hyperbole
gives Org complete control over {M-RET} so that it behaves just as it does normally in
Org mode.

3. How can I change the Smart Mouse Key bindings?

Since the Smart Mouse Keys are set up for use under many different Emacs configura-
tions, there is no easy way to provide user level customization. Any mouse key binding
changes require editing the (hmouse-setup) and (hmouse-get-bindings) functions
in the hmouse-sh.el file.

To make the Smart Keys do new things in particular contexts, define new types of
implicit buttons, see Section 4.3 [Implicit Buttons], page 25.

The hkey-alist and hmouse-alist variables in hui-mouse.el and hui-window.el
must be altered if you want to change what the Smart Keys do in standard con-
texts. You should then update the Smart Key summary documentation in the file,
man/hkey-help.txt, and then regenerate the readable forms of this manual which
includes that file.

4. What if I get mail with a Hyperbole button type I don’t have?
Or what if someone sends a mail message with a button whose link referent I can’t
access?
You receive an error that an action type is not defined or a link referent is not acces-
sible/readable if you try to use the button. This is hardly different than trying to get

https://www.emacswiki.org/emacs/Hyperbole
https://www.emacswiki.org/emacs/Hyperbole

Appendix G: Questions and Answers 162

through a locked door without a key; you try the doorknob, find that it is locked, and
then realize that you need to take a different approach or else give up.

Like all communication, people need to coordinate, which usually requires an iterative
process. If you get a mail message with a button for which you don’t have the action
type, you mail the sender and request it.

5. How can I modify a number of global buttons in succession?

Rather than typing the name for each, it is quicker to jump to the global button file and
edit the buttons there as you would any explicit or implicit buttons. By default, the
ButFile/PersonalFile menu item takes you to the file where global buttons are saved.
Global buttons are saved near the end of this file.

6. Why are button attributes scattered across directories?

When you think of a hyperspace that you depend on every day, you don’t want to have
a single point of failure that can make you incapable of doing work. With Hyperbole,
if some directories become unavailable for a particular time (e.g. the filesystems on
which they reside are dismounted) you can still work elsewhere with minimal effect.
We believe this to be a compelling factor to leave the design with distributed button
attribute storage.

This design also permits the potential addition of buttons to read-only media.
7. Why are action types defined apart from implicit button types?

Any category of button can make use of any action type. Some action types are useful
as behavior definitions for a variety of button categories, so all action types are defined
separately to give them independence from those types which apply them.

For implicit button types that require a lot of code, it is useful to add a module that
includes the implicit button type definition, its action type definition and supporting
code. Then simply load that module into your Emacs session.

163

Appendix H Future Work

This appendix is included for a number of reasons:

e to better allow you to assess whether to work with Hyperbole by providing sketches of
possible additions;

e to direct further development effort towards known needs;

e and to acknowledge known weaknesses in the current system.

Without any serious interest from users, progress on these fronts will be slow. Here are
some new features we have in mind, however.

Button Copying, Killing, and Yanking

There is as yet no means of transferring explicit buttons among buffers. We
realize this is an important need. Users should be able to manipulate text with
embedded buttons in ordinary ways. With this feature, Hyperbole would store
the button attributes as text properties within the buffers so that if a button
is copied, its attributes follow. When a buffer is saved, the attributes also will
be saved.

Koutliner View Mode

This will complement the Koutliner editing mode by using simple one character
keys that normally insert characters to instead modify the view of a Koutline
and to move around in it, for ease of study. Switching between view and edit
modes will also be simple.

Direct Manipulation

Trails

Hyperbole is designed to let you rapidly navigate and manipulate large, dis-
tributed information spaces. Being able to directly manipulate entities in these
spaces will accelerate understanding and production of new information. Al-
ready Hyperbole lets you drag buffers, windows, files, and directories and place
them where you like. But there is much more that can be done to allow for
higher-level browsing and information organization.

Trails are an extension to the basic history mechanism presently offered by
Hyperbole. Trails will allow a user to capture, edit and store a specific sequence
and set of views of information for later replay by other users. Conditional
branching may also be supported.

Storage of button data within button source files

The current design choice of storing buttons external to the source file was made
under the assumption that people should be able to look at files that contain
Hyperbole buttons with any standard editor or tool and not be bothered by
the ugly button data (since they won’t be able to utilize the buttons anyway,
they don’t need to see or have access to them).

In many contexts, embedding the button data within the source files may be a
better choice, so a provision which would allow selection of either configuration
may be added. Here are some of the PROs and CONs of both design choices:

Appendix H: Future Work 164

POSITIVE NEGATIVE

Button data in source file

Documents can stand alone. All edit operators have

Normal file operations apply. to account for file
structure and hide

Simplifies creation and internal components.

facility expansion for
structured and multimedia
files.

Button data external to source file

Files can be displayed and Currently, attributes for
printed exactly as they look. a whole directory are

No special display formatting locked when any button

is necessary. entry is locked.

Button-based searches and
database-type lookup operations
need only search one file

per directory.

Forms-based Interfaces
This will allow one to create buttons more flexibly. For example, button at-
tributes could be given in any order. Entry of long code sequences, quick note
taking and cross-referencing would also be made easier.

Collaboration Support
From the early stages of Hyperbole design, collaborative work environments
have been considered. A simple facility has demonstrated broadcast of button
activations to a number of workstations on a local area network, so that one
user can lead others around an information space, as during an online design
review. (This facility was never adapted to the current Hyperbole release,
however). Nowadays you could just use a screen sharing program.

165

Appendix I References

[AkMcYo88|

[Bro87]

[Con87]

[Eng68]

[Eng84al]

[Eng84b)]

[Fos88]

Akscyn, R. M., D. L. McCracken and E. A. Yoder. KMS: A Distributed Hy-
permedia System for Managing Knowledge in Organizations. Communications

of the ACM, Vol. 31, No. 7, July 1988, pp. 820-835.

Brown, P. J. Turning Ideas into Products: The Guide System. Proceedings of
Hypertext 87, November 13-15, 1987, Chapel Hill, NC. ACM: NY, NY, pp.
33-40.

Conklin, Jeff. Hypertext: An Introduction and Survey. IEEE Computer, Vol.
20, No. 9, September 1987, pp. 17-41.

Engelbart, D., and W. English. A research center for augmenting human intel-
lect. Proceedings of the Fall Joint Computer Conference, 33, 1, AFIPS Press:
Montvale, NJ, 1968, pp. 395-410.

Engelbart, D. C. Authorship Provisions in Augment. Proceedings of the 198/
COMPCON Conference (COMPCON °8} Digest), February 27-March 1, 1984,
San Francisco, CA. IEEE Computer Society Press, Spring, 1984. 465-472.
(OAD,2250,)

Engelbart, D. C. Collaboration Support Provisions in Augment. Proceedings of
the AFIPS Office Automation Conference (OAC 84 Digest), February, 1984,
Los Angeles, CA, 1984. 51-58. (OAD,2221,)

Foss, C. L. Effective Browsing in Hypertext Systems. Proceedings of the Con-
ference on User-Oriented Content-Based Text and Image Handling (RIAO 88),
March 21-24, MIT, Cambridge MA. Centre de Hautes Etudes Internationales
d’Informatique Documentaire, 1988, pp. 82-98.

[GaSmMe86]

[HaMoTr87]

[Har88|

Garrett, N., K. E. Smith and N. Meyrowitz. Intermedia: Issues, Strategies, and
Tactics in the Design of a Hypermedia Document System. Computer-Supported
Cooperative Work (CSCW ’86) Proceedings, December 3-5, Austin, TX, 1986,
pp. 163-174.

Halasz, F. G., T. P. Moran and R. H. Trigg. NoteCards in a Nutshell. Pro-
ceedings of the CHI and GI ’87 Conference on Human Factors in Computing
Systems, Toronto, J. M. Carroll and P. P. Tanner, (editors), ACM: NY, NY,
April 1987, pp. 45-52.

Harvey, G. Understanding HyperCard. Alameda, CA: SYBEX, Inc., 1988.

[KaKaBeLaDr90]

[Nel87a]

Kaplan, S. J., M. D. Kapor, E. J. Belove, R. A. Landsman, and T. R. Drake.
AGENDA: A personal Information Manager. Communications of the ACM,
No. 33, July 1990, pp. 105-116.

Nelson, T. H. Computer Lib/Dream Machines. MicroSoft Press, Redmond,
WA, 1987.

Appendix I: References 166

[Nel87b]
[NoDr86]

[Shn82]

[Sta87]

[Tri86)]

[TrMoHa87]

[Wei92]

Nelson, T. H. Literary Machines, Edition 87.1. Available from the Distributors,
702 South Michigan, South Bend, IN 46618, 1987.

Norman, D. A. and S. W. Draper, editors. User Centered System Design.
Lawrence Erlbaum Associates: Hillsdale, New Jersey, 1986.

Shneiderman, B. The future of interactive systems and the emergence of direct
manipulation. Behavior and Information Technology, Vol. 1, 1982, pp. 237-
256.

Stallman, R. GNU Emacs Manual. Free Software Foundation, Cambridge: MA,
March 1987.

Trigg, R., L. Suchman, and F. Halasz. Supporting collaboration in NoteCards.
Proceedings of the CSCW ’86 Conference, Austin, TX, December 1986, pp.
147-153.

Trigg, R. H., T. P. Moran and F. G. Halasz. Adaptability and Tailorabil-
ity in NoteCards. Proceedings of INTERACT °87, Stuttgart, West Germany,
September 1987.

Weiner, B. PIEmail: A Personalized Information Environment Mail Tool. De-
partment of Computer Science Masters Project, Brown University: Providence,
RI, May 10, 1992.

[YaHaMeDr88|

Yankelovich, N., B. J. Haan, N. Meyrowitz and S. M. Drucker. Intermedia: The
Concept and the Construction of a Seamless Information Environment. IEFE
Computer, Vol. 21, No. 1, January 1988, pp. 81-96.

[YoAkMc89]

Yoder, E. A., R. M. Akscyn and D. L. McCracken. Collaboration in KMS,
A Shared Hypermedia System. Proceedings of the 1989 ACM Conference on
Human Factors in Computer Systems (CHI ’89), April 30-May 4, 1989, Austin,
TX, ACM: NY,NY, 1989, pp. 37-42.

Key Index

%
/2P 59
(e 60
) 60
I

o 60
Y

s e 82
R 57, 60
.. 57, 82
<

Qe 82
T 60
>

D 82
?

P 57
L e 60, 82

167

O 57
e 61
0

0= 57
Bl 58
A 58
ActionKey ... 11
Action Key, web browsing..................... 32
Assist Key ... 11
D 60, 81

Key Index

C

o2 PP 59
CC B 70
CmC e e 69
GG e e 16, 69, 120
C=C /e 51, 119
CmC €ttt 70
GG > et e 70
CmC T e 70
C=C @ 119
CmC e 57
C=C \ et 119
CmC ottt e e 69
C=C G0 . 69
CmC . e ettt 72
C=C Cb. e 70
C-CCC i 27, 69
C=C Cd .t 70
C-cC-eP P . 54
C—c C—f . 70
C=C G et 72
C-CC-1d.. it 145
CC Gl gttt 145
C=C C-l i e 145
C=C C=l .t 145
C=C =l m. i 145
C-CC-Ll P 145
C=C Gl Sttt 146
C=CC=Ll b 146
C=C Bl Wittt e e 146
C=C G ottt e e e e 69
CC Gl oot e 69
CmC G0 ettt 72
C-CCp. 70
CmC Sttt e e e 72
CC Gt e 72
CmC Gt e ettt e e e 70
C-CC-y. 46
{2t 69
CmC MGttt 69
C-C RET ...ttt 16, 119
C-h A .. e 14, 119
C-hh... 9,49, 119
C-hh Ca. ..ot e 110
C-hhcd.....oi e 15
C-h b C Ot 28
C-h h Cr i 111
C-hhCcu...ooiiii i 116, 157
C-h h C Wi e 114
o o U 50
C-h h C—t .. e 50
C-hhdd......coiiii e 6
C-hhdi.. ... o i 9
C-h h e .. e 43
C-h h € C .t e e 43
C-hh e e ... e 43
C-hhel..... . i 43

168
C-hhg....ooo 25
C-hhgl.oooiiiiiiiiiiii 25
C-hhha.....oiiii i e i 53
CoR BB Covee e 53, 55
C-hh ho.. .. i 55
C-hhhoa......oiiiiii i 53
C-hhhodi...oooiiiii i 53
C-hhhp.e e 53, 54
C-hhht. .. 53
C-h h 26
C-hhia....... oo i 26
C-hhic.. i 26
C-hhie...... i, 26
C-hhil.. .. 26
C-hhin..... ... i 26
C-hhir.. 26
C-hhit.. ... 93
C-hh ke e 63
C-hhkfd....... .. i 72
C-hhkff 71
C-hhkfh... ... i 72
C-hh kf k... e 72
C-hhmc.. ... e 15
C-hhm .. . e 15
C-h B Q. 9, 50
C-hh st 57
C-h h S W 57
C-hh X 9, 50, 119
Ch R Y 119
C-h b 7
C=M—h. . . e 72
G e e 88
C-mouse-3 ...ttt 65, 79
[P 57
C=U CmC ettt e e e 69
C-U C=C GGttt e e 69
C-u C=C CmM. ettt e 69
CU CmC M. ottt e 69
C-uC-h A ... 14, 119
CU M=0 . it e 20
C-u M-o w<window-id> 21
CuM-RET. ..o\t 11, 119
C=X § 72
(02 S 18
CmX G ettt e 88
(02 45
(02 S« 20
C=X T A it e 74
G T S ittt 74, 120
Gy et 74
D
o S 59
DEL .o e 82
o 10} & 59
D e 59

Key Index

Do 59
Ho 59
HyControl, see screen............ccovvvuuunnn. 57
HyRolo, seerolo.............................. 81
HyWiki, C-hhhc...... i it 55
HyWiki, C-hhho........... 55

A 60
L 60
T/J/K/M oo 59

Ko 60
keypad number...............................L 59
koutliner, Action Key, cell argument........ 68
koutliner, Action Key, hide or show cell.... 73
koutliner, Action Key, klink................ 74
koutliner, Assist Key, listing attributes.. 76
koutliner, C-c+..... ...t 70
koutliner, C—C a@......oiiiiiniinieiaennnennn. 67
koutliner, C-cb........ ..., 73
koutliner, C-c C—, iiiiii it 67
koutliner, C-c C—........ ..o, 67
koutliner, C-c C—<....... .o, 67
koutliner, C-c C=>.ottt 67
koutliner, C-c C-i........coiiiiiineennnn. 75
koutliner, C-c C-K..........ooiiiiiiininnnn.. 67
koutliner, C-c C-1...........coiiiiiiininnan.. 66
koutliner, C-c C-V.......ooiiiiiiiinnnn. 73
koutliner, C-C e......coiiriiiiiiiinnnnnn. 70
koutliner, C-c h.........ciiiiiiiiiin.. 76
koutliner, C-C K.........oiiiiiiiiiiinnann.. 67
koutliner, C-c 1....... ..o, 74
koutliner, C-c M=j.......coviiiiiiiiiinnnn... 70
koutliner, C-c M-1............, 66
koutliner, C-c M-Q.........cciiiiiiiiiiiin, 70
koutliner, C-Cp........ooiiiiiiiiiii 67
koutliner, C-C S......coiiiiiiiiiininnnnn., 70
koutliner, C-ct........cviriiiiiniininn.. 70
koutliner, C-j......... ... il 67
koutliner, C-M-j 70
koutliner, C-M-q ..., 70
koutliner, C-uc-j.........................L. 67

koutliner, C-uC-ck..........coviiiininn. 67

169
koutliner, C-uC-c M-1....................... 66
koutliner, C-uC-C S.......ciiiiirnnnnnann. 70
koutliner, C-uC-X i........vviiniinnennn... 71
koutliner, C-x di.........ciiiiiiiininnn... 71
koutliner, C-y......... ... i il 67
koutliner, M-<left>............ 67
koutliner, M-<right>......................... 67
koutliner, M-0C-Ct.......oiiirinennnnnn... 70
koutliner, M-1 TAB....... 68
koutliner, M-j..........l 70
koutliner, M-q........... ..o 70
koutliner, M-RETciiiiinn... 73
koutliner, M-Shift-<left>................... 67
koutliner, M-Shift-<right>.................. 67
koutliner, M-TAB iiiiininn... 67
koutliner, Shift-TAB..............coviiin... 67
koutliner, TAB....ottt 67
Ko 60
L
A 59
deft . 59
M
oo ettt e e e e e e e e e 60
Mo 60
M=<AOWI> .ottt e 69
M=<Up>. o 69
M=0 M=TAB ... e e 68
M=0 TAB . .. e 68
M-1 M-o w <window-id>coiinn... 21
Mob e 50
M= e 50
M0 ot 20, 119
M-o0o i <window-id>...........cciiiiiiiineinn... 21
M-om <window-id>............... ..., 21
M-o r <window-id>.............coiiiiirnnnnn... 21
M-o t <window-id>............, 21
M-o w<window-id>..............ciiiiiiainn... 21
M-RET ...t 11, 27, 119
A 74, 120
M-x kotl-mode:show-subtree.................. 72
middle mouse key..........ooiiiiiiiiiiiiiit 11
N
o NP 59, 81
O
O et e e 59
D e e 59
P
Pttt 59, 81

Key Index 170

Q screen, C-hhsf............................. 57
e P 61 screen, C-hhsw........oooooeiiinn 57
Qe 61 SCTEN, d .ttt 59
SCreen, dOWIuuiirein e ieeenanannns 59
screen, D. e 59
R screen, £ i 60
E e 60 SCEEOm, Flviii 60
TAight .t 59 SCTEEN, B.vwvvrrii 59
LOL0, s e]2 screen, H.. 59
o 2 o 82 SCIEOM, 1 .hhviiiii e 60
TOL0, <ttt ettt 82 screen, L. 60
TOLO, >t 82 screen, I/J/K/M.....oovvviniiiiiiiiinnn, 59
1010, [82 SCTEM, J oovvvvriiiiei 60
2010, 1o 2 SCTrEeIM, J .ttt et i 60
TOL0, @ittt e 81 SCreem, k..ot 60
T010, b 81 screen, keypad numberooo 59
2010, CoT oo oo 81 screen, K i 60
2010, CoS oo oo 81 SCTrEeNn, L ...ttt i 59
2010, DEL .o v oo]2 screen, left...... il 59
2010, €. oo 82 SCTEEOI, M ottt ettt ettt ie e e ieenns 60
rolo, f.. i 81 screen, M. 60
r0lo, Mo 81 SCTEEI, TL.cvvhhrrr e 59
2010, Lo 81 [Tk of Y=Y « W« TPt 59
2010, M8 o oo 81 screen, Ot 59
rolo, M-=TAB e 81 SCIEEI, Povvvvrrrrrir e e 59
oo 2 o R « 81 SCITEEI, Q..vvvvrrvrrir e 57, 61
o 2 o o T 81 screen, Q..........ooiiiii 57, 61
TOL0, Pvneeeeen e]1 = o= T= ¢ S o 60
TOL1O, Q. 82 SCreen, TIGRT.......oovivirriiii 59
TOL0, Tttt ettt e e e 81 SCIEEI, S .chvvhrriririi e 59
POL0, S nnrreenn e e e e 81 [Tk of Y=Y « WA v 57, 61
1010, SHIFT-TAB. ..\ @\ 81 [T of Y=Y « WA APt 61
2010, SPC ..o 82 SCTEEIM, UP « vt vvvvettiiiiiiitteeeeeeeeaa... 59
TOLlO, Bt 81 SCLECI, W..wvhvhiiiiee it 59
T0L0, TAB « et 81 SCTeem, W.........ooiiiiiii 59
TOL0, Uittt et it e ettt e e e e i 82 e e 61
SCTEEI, Z oottt ittt et ettt 61
shift-left mouse keycovvunnn.. 11
S shift-middlemouse key.................. ... 11
S it e 59 SRIfE-TIght MOUSE KeY......ovovvvvrnriinines 1
Yo oY= WA A 59 SRIFE-TAB. .o 50
> P et 82
screen, (...t 60
SCTEEI,) vttt et iee e it 60
SCTEEI, F ottt ettt e 60 T
SCTEEI, ~ ittt et 57, 60
SCTOIL, .+ v v e 57 B 61
SCT@EIL, = oottt et e 60 TAB . e 50
SCTEIL, T ittt et 57
screen, [......ooiiiii i 60
<Y oY=« WA 60 U
SCTEEM, © o vee et e e 57 L0 61, 82
SCTROIL, ™ e ettt e e 61 L o 59
screen, 0-9 i 57
<Y of Y=Y « WA - PPt 58
SCreen, A 58 W
screem, b.........i 60 W et e e e 59
SCIreen, C..oovvvvnrninnennnnnnnncenennns 59 W o 59

screen, C—c \ ...t 57

Key Index 171

172

Function, Variable and File Index

A

ace-window.............. i 20
action-act-hook................l 87
action-—Kkey.........iiiiii 11
action-key-default-function 14, 159
action-key-depress-hook..................... 87
action-key-eol-function................. 140
action-key-minibuffer-function........... 131
action-key-modeline.......................... 18
action-key-modeline-buffer-id-function.......... 55
action-key-modeline-function 18, 133
action-key-release-hook..................... 87
action-mouse-Key.............iiiiiiiiia., 11
actype:create 89
actype:deletel 90
actypes annot-bib.......... oo 36
actypes completion........................... 36
actypes debbugs-gnu-query................... 36
actypes display-boolean 36
actypes display-value........................ 36
actypes display-variable.................... 36
actypes eval-elisp........................... 36
actypes exec-kbd-macro................... ..., 37
actypes exec-shell-cmd....................... 37
actypes exec-window-cmd 37
actypes git-reference........................ 37
actypes github-reference.................... 37
actypes gitlab-reference.................... 38
actypes hyp-config.................... 39
actypes hyp-request................ooiiiin, 39
actypes hyp-source........................... 39
actypes kbd-key............ ... o ool 39
actypes link-to-bookmark.................... 39
actypes link-to-buffer-tmp.................. 39
actypes link-to-directory................... 39
actypes link-to-doc..................., 39
actypes link-to-ebut......................... 39
actypes link-to-elisp-doc................... 39
actypes link-to-file......................... 39
actypes link-to-file-line................... 40
actypes link-to-gbut...................... ... 40
actypes link-to-ibut...................... ... 40
actypes link-to-Info-index-item............ 40
actypes link-to-Info-node................... 40
actypes link-to-kcell........................ 40
actypes link-to-kotl......................... 40
actypes link-to-mail......................... 40
actypes link-to-regexp-match................ 40
actypes link-to-rfc............ccoiiiiiii.... 40
actypes link-to-string-match................ 41
actypes link-to-texinfo-node................ 41
actypes link-to-web-search.................. 41
actypes man-show 41

actypes org-internal-target-link........... 41

actypes org-linkl 41
actypes org-radio-target-link 41
actypes rfc-toc.......... ..., 41
actypes text-toC ...t 41
actypes WWww-url..............iiiiiiiii..., 41
actypes yt-info.......... i oo, 41
actypes yt-play.........cooiiiiiiiiiiiii, 41
actypes yt-search.............cooiiiiiinnnnn. 41
actypes yt-url............... ...l 42
add-hook i 87
assist-key.......... ... 11
assist-key-default-function................. 14, 159
assist-key-depress-hook..................... 87
assist-key-eol-function........... L 140
assist-key-minibuffer-function 131
assist-key-modeline..................., 18
assist-key-modeline-function............... 18, 133
assist-key-release-hook..................... 87
assist-mouse-kKey............ooiiiiiiiiiiiit 11

browse-url-browser-function 32, 41, 72, 157

C

c++-cpp-include-path........ 148
ct+-include-path ol 148
class, ebut 94
class, hargs il 90
class, hattr 93
class, hbdata.............. ..o i il 94
class, hbut 93, 94
class, htype..... ..o 89
customize-browse........... 110
customize-variable.............. 110

defact. ... 89
defib.... ... 92
dir, ~/.hyperb....... 35
dired............. i 55
dired-jump............... ...l 17
drag-with-mode-line............ 19

Function, Variable and File Index

E

ebut-create-hook................. 87
ebut-delete-hook..............ccoiiiiiiiiin... 87
ebut-modify-hook............... 87
ebut:create........ 95
ebUL: ImMaAD . ..ot 95
ebut:program.................. ..ol 95
EINACS-VEISION .« ot ettt tee e e e iee e e 160
ert-results—mode...............coiiiiiiiiiin.. 34
eval-defun............. i 88
eval-last—SeXpiiiiiiii 88

F

file, .emacs................o. 9, 44, 46, 66, 120
file, hypb.... ..o 24
file, kotl suffix............ ..o i 65
file, DEMOt 28
file, DIRo 31
file, EXAMPLE.kotl 63
file, FAST-DEMOt 6
file, hactypes.elo i 89
file, hbut.el...... ... i 89, 94
file, hib-debbugs.el 31
file, hib-kbd.elo i 93
file, hibtypes.el 26, 27, 89
file, hmailel i i 46
file, hmouse-key.el........., 161
file, hmouse-sh.el 161
file, hsettings.elciiiiiiian. 117
file, hsys-* ... 95
file, hsys-org.el....... L. 27
file, hui-ep*.el. ...t 117
file, hui-window.el.............. 161
file, HYPB..... .o 50
file, hyperbole.el 44, 47, 49
file, hywconfig.el oL 85
file, man/hyperbole.html........................ 9
file, man/hyperbole.nfo......................... 9
file, man/hyperbole.pdf 9
file, man/hyperbole.texi........ ...t 9
file, MANIFEST i 31
fill-colummn 123
fill-prefix. . ..o 94
find-file..... .. . 115
find-file-hookl 88
flymake-diagnostics-buffer-mode............ 99
flymake-goto-next-error.................... 145
flymake-goto-prev-error.................... 145
flymake-minor-mode.................... 99
flymake-show-buffer-diagnostics........... 145
flymake-start 146
flymake-switch-to-log-buffer.............. 145

173
G
gbut:ebut-program............................ 95
gbut:file...... ..o 99
global-set-keyiiiiiiiiL. 118
H
hbmap:dir-user...................ooiiiiiia 35
hbmap:filename..................., 35
hbut:current.............. L. 87, 94
hbut:fill-prefix-regexpsccooiiii. .. 94
hbut:label-to-key........... ... i 94
hbutimax-len o il 100
hib-python-traceback 29
hibtypes-begin-load-hook.................... 87
hibtypes-end-load-hook...................... 88
hibtypes-git-default-project 37
hibtypes-github-default-project................. 37
hibtypes-github-default-user 37, 38
hibtypes-gitlab-default-project 38
hibtypes-gitlab-default-user................. 38, 39
hibtypes-social-default-service 33
hkey-ace-window-setup 20
hkey-alist....... ... i i 161
hkey-always-display-menu..................... 141
hkey-either............. i i 11
hkey-init....... 120
hkey-operate.............oiiiiiiiiiiii 20
hkey-summarize.................... 159
hmail:listero i 154
hmailireader............. o 154
hmouse-add-unshifted-smart-keys............ 11
hmouse-alist 161
hmouse-context-ibuffer-menu................ 18
hmouse-context-menu.......................... 18
hmouse-drag-item-mode-forms 136
hmouse-get-bindings 161
hmouse-middle-flag 11
hmouse-setupl 161
hmouse-x-diagonal-sensitivity 135
hmouse-x-drag-sensitivity 135
hmouse-y-diagonal-sensitivity 135
hmouse-y-drag-sensitivity 135
hpath:at-p......... o i i i 32
hpath:display-where 41, 111, 142
hpath:external-display-alist-macos............. 113
hpath:external-display-alist-mswindows. 113
hpath:external-display-alist-x 113
hpath:external-file-suffixes 114
hpath:find.................. oo ool 32
hpath:find-file-urls-mode.................. 115
hpath:get-external-display-alist 113
hpath:internal-display-alist.................... 111
hpath:native-image-suffixes.................... 111
hpath:suffixes.......... ... 32
hpath:variable-regexp 33
hpath:variables 114

hproperty:but-create 117

Function, Variable and File Index

hproperty:but-emphasize-flag.................. 117
hproperty:but-flash-time-seconds 117
hproperty:but-highlight-flag................... 117
hproperty:cycle-but-color.................. 117
hsys-consult-org-grep-tags-p............... 27
hsys-flymake-display-this-
or-next-issue...............l 145
hsys-flymake-insert-issue-at-point) 145
hsys-flymake-toggle 146
hsys-flymake-toggle-wraparound............ 146
hsys-org-agenda-tags-p...................... 27
hsys-org-consult-grep....................... 99
hsys-org-enable-smart-keys 27, 28, 53, 137, 161
hsys-org-mode-p.......................l.. 27
hsys-org-roam-consult-grep.................. 99
htype-create-hook............................ 88
htype-delete-hook............................ 88
hui-kill-ring-save.......................... 120
hui-menu-screen-commands.................... 18
hui-select-goto-matching-tag............... 16
hui-select-thing............................. 16
hui-select-thing-with-mouse 16
hui:ebut-link-directly...................... 21
hui:ebut-prompt-for-action 42
hui:ebut-rename....................... 44
hui:hbut-delete-confirm-flag 45
hui:htype-help 'ibtypes 93
hui:ibut-link-directly...................... 21
hycontrol-display-buffer-predicate-list........... 57
hycontrol-enable--windows-mode............. 61
hycontrol-enable-frames-mode 61
hycontrol-frame-heights 58
hycontrol-frame-offset 60, 61
hycontrol-frame-widths............ 58
hycontrol-get-screen-offsets............... 61
hycontrol-keep-window-flag 60, 136
hycontrol-screen-offset-alist..................... 61
hycontrol-set-screen-offsets............... 61
hycontrol-window-grid-repeatedly........... 58
hycontrol-windows-grid-by-buffer-list..... 58
hycontrol-windows-grid-by-file-list....... 58
hycontrol-windows-grid-by-file-pattern.... 58
hynote-directory-list 56
hypb:fgrep-git-log...........c.oiiiiiiiiiit. 32
hypb:grep-git-log............. ... 32
hypb:rgrep-command............ 51
hyperb:dir 9
hyperbole 9, 159
hyperbole-init-hook................. 10, 87
hyperbole-mode 120
hyperbole-mode-hook 10
hyperbole-mode-map...................... ... 119
hyperbole-mode-off-hook 10
hyperbole-mode-on-hook 10
hyperbole-popup-menu.................... 49, 159
hyperbole-set-key........................... 118
hyperbole-web-search-alist 114

hyperbole-web-search-browser-function 51

174
hyrolo-add................... ...l 79
hyrolo-add-hook............. 82, 88
hyrolo-consult-grep.......................... 79
hyrolo-date-format 77, 82
hyrolo-display-format-function............. 84
hyrolo-display-hook....................ounn. 88
hyrolo-display-matches...................... 79
hyrolo-edit............ ... 79
hyrolo-edit-hook................. 82, 88
hyrolo-email-format.......................... 84
hyrolo-fgrep.........cooiiiiiiiiiiiii 79
hyrolo-file-list 77, 82
hyrolo-find-file............... 79
hyrolo-google-contacts-fgrep............... 83
hyrolo-google-contacts-flag 83
hyrolo-google-contacts-grep 83
hyrolo-grep............ ... il 79
hyrolo-hdr-and-entry-regexp 84
hyrolo-hdr-regexp............................ 84
hyrolo-highlight-face....................... 83
hyrolo-kill..........l 79
hyrolo-kill-buffers-after-use.............. 83
hyrolo-mail-to 79
hyrolo-mode-hook............................. 88
hyrolo-save-buffers-after-use.............. 84
hyrolo-sort............ i 79
hyrolo-tags-view............................. 79
hyrolo-word...............l 79
hyrolo-yank............coiiuiiiiiiiinnenannnn. 79
hyrolo-yank-reformat-function.............. 88
hywconfig-add-by-name 85
hywconfig-delete-by-name.................... 85
hywconfig-delete-pop..................... 85, 86
hywconfig-restore-by-name................... 85
hywconfig-ring-maxoo .. 86
hywconfig-ring-save..................... ... 85
hywconfig-yank-pop........................... 85
hywiki-active-in-current-buffer-p......... 34
hywiki-consult-grep.............cooiinunnnn. 55
hywiki-directory............ L 53, 55
hywiki-exclude-major-modes 54
hywiki-highlight-all-in-prog-modes.............. 54
hywiki-mode............. ...l 34, 53, 55
hywiki-org-get-publish-property............ 54
hywiki-org-link-type-required................... 53
hywiki-org-publish-project-alist................. 54
hywiki-org-publishing-directory................. 54
hywiki-org-publishing-function 54
hywiki-publish-to-html...................... 54
hywiki-word-highlight-flag...................... 54

Function, Variable and File Index

I

ibtype:createl 92
ibtype:delete 93
ibtypes action............. ...l 28
ibtypes annot-bib.......... ol 32
ibtypes completion........................... 28
ibtypes cscope.............. il 31
ibtypes ctags............ ...l 32
ibtypes debbugs-gnu-mode 31
ibtypes debbugs-gnu-query................... 31
ibtypes debugger-source 29
ibtypes dir-summary.......................... 31
ibtypes doc-id...........l 28
ibtypes elink......... ...l 30
ibtypes elisp-compiler-msg.................. 29
ibtypes ert-should................... 34
ibtypes etags...........ooiiiiiiiiiiii i 32
ibtypes git-commit-reference................ 32
ibtypes glink........ o il 30
ibtypes gnus-push-button.................... 29
ibtypes grep—msg ...t 29
ibtypes hynote-file 34, 56
ibtypes hyp-address.......................... 29
ibtypes hyp-html-manual 32
ibtypes hyp-source.............coiiiiiinnnnn. 28
ibtypes hyperbole-run-test.................. 34
ibtypes hyperbole-run-test-definition..... 33
ibtypes hyperbole-run-tests................. 34
ibtypes hyrolo-stuck-msg 29
ibtypes hywiki-existing-word................ 28
ibtypes hywiki-word 34, 54
ibtypes id-cflow............... 32
ibtypes ilink............l 30
ibtypes Info-node 29
ibtypes ipython-stack-frame................. 30
ibtypes kbd-key..........o ool 30
ibtypes klink......... ... oo il 30
ibtypes mail-address...............coiiiin, 33
ibtypes man-apropos.......................... 30
ibtypes markdown-internal-link 32
ibtypes org-id............ il 33, 138
ibtypes org-link-outside-org-mode..... 32, 138
ibtypes patch-msg, 29
ibtypes pathname 32
ibtypes pathname-line-and-column........... 30
ibtypes python-tb-previous-line............ 34
ibtypes rfc ... 30
ibtypes rfc-toc......... ... ool 32
ibtypes ripgrep-msg........... 29
ibtypes smerge.............. ...l 28
ibtypes social-reference.................... 33
ibtypes texinfo-ref...........l 29
ibtypes text-tocl 31
ibtypes www-url.............ol 32
ibut:at-p........ooo 93
ibut:label-setl 92
image-dired-external-viewer 157
Info-directory-list L 9

175
Info-global-next................. ..., 153
Info-global-prev..................ooiinin. 153
interactive..........ooiiiiiiiiii 89
K
kcell:ref-to-id............ 40
kexport:displaycooviiiiiiiiiiiiiiannn. 72
kexport:html....................... 72
kexport:koutline.............. ...l 72
kfile:find............o ool 64
kfile:write........ il 122
Kill-ring. . ..o 85
kimport:aug-post-outline.................... 71
kimport:file...... ..o 71
kimport:insert-file 126
kimport:insert-file-contents............... 71
kimport:insert-register.................... 126
kimport:mode-alist............. o 71
kimport:star-outline 71
kimport:suffix-alist 71
kimport:text............l 71
klink:c-style-modes............ 75
klink:create.........covvviiiiiiinnnnnn... 64, 122
klink:ignore-modes.......... L. 75
kotl-mode...............oiiiiiiiiiii 71
kotl-mode-hook ..., 88
kotl-mode:add-below-parent 122
kotl-mode:add-cell.......................... 122
kotl-mode:add-child 122
kotl-mode:add-prior-cell................... 122
kotl-mode:append-cell, 122
kotl-mode:back-to-indentation............. 122
kotl-mode:backward-cell.................... 122
kotl-mode:backward-char.................... 122
kotl-mode:backward-kill-word 122
kotl-mode:backward-sentence............... 122
kotl-mode:backward-word.................... 123
kotl-mode:beginning-of-buffer............. 123
kotl-mode:beginning-of-cell............... 123
kotl-mode:beginning-of-line............... 123
kotl-mode:beginning-of-tree............... 123
kotl-mode:cell-attributes.................. 123
kotl-mode:cell-help........................ 123
kotl-mode:center-line...................... 123
kotl-mode:center-paragraph 123
kotl-mode:copy-absolute-
klink-to-kill-ring..................... 74, 75
kotl-mode:copy-absolute-
klink-to-register...................... 74, 75
kotl-mode:copy-after 123
kotl-mode:copy-before...................... 123
kotl-mode:copy-relative-
klink-to-kill-ring 75
kotl-mode:copy-relative-
klink-to-register.......................... 75

kotl-mode:copy-to-register 124

Function, Variable and File Index

kotl-mode:copy-tree-or-

region-to-buffer.................... ... 123
kotl-mode:delete-backward-char............ 124
kotl-mode:delete-blank-lines.............. 124
kotl-mode:delete-char 124
kotl-mode:delete-indentation.............. 124
kotl-mode:demote-treeu... 124
kotl-mode:down-level 124
kotl-mode:end-of-buffer.................... 124
kotl-mode:end-of-cell 124
kotl-mode:end-of-line...................... 124
kotl-mode:end-of-tree...................... 124
kotl-mode:example.c.o.uuuuiiiinnnnnn. 124
kotl-mode:exchange-cells................... 124
kotl-mode:fill-cellcvuvuevnnn.. 125
kotl-mode:fill-paragraph................... 125
kotl-mode:fill-treecouu... 125
kotl-mode:first-sibling.................... 125
kotl-mode:fkey-backward-char.............. 125
kotl-mode:fkey-forward-char............... 125
kotl-mode:fkey-next-line................... 125
kotl-mode:fkey-previous-line.............. 125
kotl-mode:forward-cell..................... 125
kotl-mode:forward-char..................... 125
kotl-mode:forward-para..................... 125
kotl-mode:forward-paragraph............... 125
kotl-mode:forward-sentence 125
kotl-mode:forward-word..................... 125
kotl-mode:goto-cell 125
kotl-mode:hide-sublevels............... 64, 126
kotl-mode:hide-subtree..................... 126
kotl-mode:hide-tree..................... 64, 126
kotl-mode:indent-line...................... 126
kotl-mode:indent-region.................... 126
kotl-mode:indent-tabs-mode.................... 68
kotl-mode: just-one-space................... 126
kotl-mode:kill-contents.................... 126
kotl-mode:kill-linec.ovuuueuunn.. 126
kotl-mode:kill-region...................... 126
kotl-mode:kill-ring-save................... 127
kotl-mode:kill-sentence.................... 127
kotl-mode:kill-tree..................... 64, 127
kotl-mode:kill-wordccovvunn... 127
kotl-mode:last-sibling..................... 127
kotl-mode:mail-treeuun... 127
kotl-mode:move-after 127
kotl-mode:move-before...................... 127
kotl-mode:newline..............ccovvuneunnn.. 127
kotl-mode:next-cellcuun... 127
kotl-mode:next-line 127
kotl-mode:open-line 127
kotl-mode:overview...................... 64, 127
kotl-mode:previous-cell.................... 127
kotl-mode:previous-line.................... 128
kotl-mode:promote-tree..................... 128
kotl-mode:refill-flag 70
kotl-mode:scroll-downccoouvun.. 128

kotl-mode:scroll-up 128

176
kotl-mode:set-cell-attribute.............. 128
kotl-mode:set-fill-prefix.................. 128
kotl-mode:show-all...................... 64, 128
kotl-mode:show-subtree..................... 128
kotl-mode:show-tree..................... 64, 128
kotl-mode:split-cell 128
kotl-mode:top-cells..................... 64, 128
kotl-mode:transpose-cells.................. 128
kotl-mode:transpose-chars.................. 128
kotl-mode:transpose-lines.................. 129
kotl-mode:transpose-words.................. 129
kotl-mode:up-level.......................... 129
kotl-mode:yank................... ...l 129
kotl-mode:yank-pop.............. 129
kotl-mode:zap-to-char...................... 129
kview:default-label-separator................... 66
kview:default-label-type............ 73
kview:set-label-separator.................. 129
kview:set-label-type 129
kvspec:activate 64, 129
kvspec:string. ... 73
kvspec:toggle-blank-lines.............. 64, 130
L
link-to-file............. 25
locate-command oo o 51
M
mail. ... 45
mail-yank-originalo oo oo 46
mark-even-if-inactive................ 120
@)
objc-cpp-include-path................ 151
objc-include-path oo 151
org-ctrl-c-ctrl-c............................ 27
org-directory........ ... i 99
org-meta-return........................... 27, 28
org-roam-directory 99
outline-minor-mode................cc.oiiii.. 153
outline-modec i, 153
R
run-hooks i 100

Function, Variable and File Index

S

selective-displayl 153
smail:comment............ ... oo 46
smart-asm-include-path................, 149
smart-c-cpp-include-path...................... 148
smart-c-include-path.......... L 148
smart-c-use-lib-man............... L 148
smart-java-package-path L 150
smart-man-c-routine-ref............ 157
smart-scroll-proportional 140

smart-treemacs-modeline..................... 55

177
T
TrEeMACS . ot i it e 55
write-file-hooKSccvviniviineinnennn.n. 88
Z
zoom—-frm.el....... 61

Concept Index

<

SEKINK> ..o 74
<> delimiters................ . 74
< VIEWSDECD .« v 73
P 73

abbreviated URLso 116
ACe-WiINdOW o 20
ACtion 36, 42, 93
action button oL 28, 34
action implicit button............o 28
Action Key . ..o 11
Action Key drag ..o, 26
Action Key in minibuffer....................... 15
Action Key, cell argument...................... 68
Action Key, hide or show cell................... 73
Action Key, HyWikio.. 53
Action Key, klink, 74
Action Key, Org Mode..........cooviiinii.. 27
Action Key, web browsing...................... 32
Action Mouse Key 131, 144
Action Mouse Key drag...............coiutn 18
actiontype ... 36
action type, creation............ oL 89
activate HyWiki link.......o .. 53
activating implicit button............. 26
activation............ oo i il 11
activeregion........... ool 134, 135
actype, link-to-mail o L 46
actypes, list of 36
address 33
alpha labels........... ... i i 66
APT 95
appending toacell.............. 70
argument entry ... 15
argument, Info index item...................... 89
argument, Infonode oL 89
argument, keell i 89
argument, klink....... ... o oo 89
argument, koutline........... ... oL 89
argument, mail message................ .. 89
argument, reading L. 90
argument, Use.............o 36
argument, View SPECvuerriiiiiieeerean 89
AITAY « o vv ettt 131, 142
Assist Key..ooovv 11
Assist Keydrag.......ooooviiiiiiiiiiii 43
Assist Key in minibuffer 15

Assist Key, listing attributes 76

178

Assist Key, Org Mode. ..., 27
Assist Mouse Keyoooovvi it 131, 144
Assist Mouse Key drag............coovina.. 18
attribute........ ... 75
attribute, adding. oo 75
attribute, modifying oL 75
attribute, no-fill oL 70, 76
attribute, removingol 75
attribute, setting.......... oL 75
attributes, displaying 76
Augment....... ... 76, 97
Augment outline..........o 71
autonumber....... ... ool 63, 66

B

balance windows............. ... o oL 60
BBDB ... 83
bibliography i 32
Big Brother DataBase 83
binding keys......... oL 118
blank lines, toggle.......... 73
bookmarks....... ... o 25
boolean expressions.............ccoiiiiii... 26
breakpoint........... .ol 29
browsing URLs 115
browsing URLs in find-file 115
bufferid..........co 17
buffer menu............. oL 17, 131, 156
buffer menu item drag L 20
buffer replaceo 21
buffer, bury...... 60
buffer, copy ... 20
buffer, swap ... 19, 61
buffer, unburyo 60
buffers swapo i 21
bug tracking....... i 31
bury buffer 17
burying...... .o 60
button....... .o 23
button action.............. oo iiiiiL 36
button activation ool 11
button attribute o il 24
button attributes..............o oL 45, 94
button category........... ...l 23
button click.......... ... 142
button data........... ... i i 24
button data saving............... oL 88
button deletiont 45
button demo............ .o il i 6
button editingol 45
button emphasis............. ...l 117
button file, directory 35
button file, HYPBo L. 50

Concept Index

button file, personal................. 35
button files ... 35
button flash time, 117
button flashing oL 117
button helpl 11, 45
button highlighting........................ 88, 117
button instance............. .. oo 43
button key....... 94
button label........... oL 24, 94
button label overlap............................ 42
button mailing..........ol 46
button name.......... ... i i 24
button posting oo 46, 47
button precedence 42
button renaming................. 44
button searching.................... 45
button summary i 45
button, explicit................ i 23, 24
button, global 23, 24
button, implicit 23, 25
button, moving oo 24
button, multiple lines 94
button, split across lines 94
byte compiler error...........o 29

C

Cocalltree.....cooviiiiiiiiiiiii .. 32
Cflowgraph.........ooiiiiiiii i 32
C/C++calltrees ..o, 31
C/C++ cross-reference.................oooou.. 31
call tree, C..oooi i 32
cell attribute......... i 75
cell creation timel 75
cell label separator............................. 66
cell ink. oo 74
cell no-fill attribute......................... 70, 76
cell reference............c il 74
cell reference, copying............ 75
cell selection..............cooiiiiiiiiiii., 67
cell, adding 67
cell, appending............ .. i 70
cell, collapse 73
cell, creatingoo i i i 67
cell, exchanging o i 70
cell, expand...........o o i 73
cell, filling ... 70
cell, hide subtree............................... 72
cell, hiding levels......... ... i 73
cell,idstamp Ot 65, 67
cell, killing. oo i 67
cell, mark and point ol 70
cell, show all ... i i 72
cell, show levels.............oo it 72
cell, show subtree.............cooiiiiii.. 72
cell, splitting......... ..o 70
cell, top-level i 65, 67

cell, transposing il 70

179
cell, yanking contents 67
change key bindings................ ...l 9
change-log-mode.............. 149
changing the view spec......................... 73
click, buffer menu................ ...l 156
click, button................ L 142
click,dired............ 141
click,endof line................... 140
click, Gnus 155
click, hyrolo matches.............. 157
click, ibuffer menu.........o L 156
click, Info......... 153
click, modeline............. oL 133
click, tar. 156
click, world-wide web 157
clone window.................. ... 20, 60, 136
code block ... 27
code block selection............. 16
collaboration.............oooiiiiiiiiiiiann. 76
collapse lines. ..., 73
collapsing........... il 72
colon-separated paths.......................... 33
comment...........iii i 131, 142
COmMPAany-modeuuuuuuuua. 136
compiler error........ ... o i 29
completion................... 15, 28, 136, 139, 143
completion, Ivy o i 138
CONCEPES . v vt 50
configuration ...t 110
consult grep org tags............. 27
consult package............ i 99
consult-org-roam package 99
ConsultFind i 79
contacts, Google oL 83
context 26
context-sensitive help 14
copy and yank 131, 134, 144
copy buffer ... 20
COPY T€ZION . ..ottt 16
COPYING ..ttt i 69
copying things to kill ring..................... 120
copying things to registers 120
create a HyWikiWord 53
create link button............... ... 21
create-time attribute.......... oL 75
creating explicit links oL 43
creating global links.............. 25
creating implicit links........... oL 26
creator attribute.......... ... oo o 75
cross referencingol 76
cross-reference, Texinfo 29
CSCOPE .« e ettt 31
ctags entry...... ... 32
Custom mode................ i 146
customization., 110
customize........... ... o ool 50
customize Org M-RET 28, 55
customize, rolo additions....................... 82

Concept Index

customize, rolo datestamps..................... 82
customize, rolo edits 82
customizing web search menu 114
CUL TEZION .« .ttt e 16
cutoff lines....... i 73

D

database............ i 146
date format.......... ... o i 82
datestamps ... 82
AbX . 29
debugging Smart Keys......................... 15
debugging tests........... i 33
default label type.......... oL 73
default Smart Key context 14
definitionso 97
delete frame o i 59
delimited things......... 16
demo file..... ..o 1
demonstrationc.iii i 6
demotiono 67
diagonal dragl 19, 135
digital signature i 97
direct selection............cooiiiiii i, 15
directory editor........ i i 17
dired ... 17
dired browsing........... ..ot 141
dired item drag oo il 20
dired, iImagesooiiiiiiii 157
dired-sidebar-mode o o 139
disable Hyperbole 9, 119
disable hyperbole key bindings................ 120
disable Hyperbole mode........................ 50
disable org-mode support 28
display. ... 57
display function.............. . .. oo 111
display outside Emacs 111
display where......... L 111
DisplayHere mode 141
displaying attributes.............. 76
distributed collaboration....................... 76
document identifier ool 28
double click. ... 15
drag.o 26, 43, 131, 144
drag emulation......... oo 20
dragitem...... ... 21
drag, buffer menu item......................... 20
drag, buffer swap 19
drag, clone window 20
drag, copy buffer.................. 20
drag, diagonal.............. oL 19, 135
drag, dired......... ..o i i 141
drag, dired item............l 20
drag, horizontal 18, 135
drag, Hyperbole button referent................ 20
drag, move frame oL 19

drag, resize window 19

180
drag, sideedge............coiiiiiiiiii . 132
drag, Smart Mouse Key 18
drag, Treemacs item 20
drag, vertical............. 18, 135
drag, window configuration..................... 19
drag, with region............., 16, 135
dragging frames........... oL 19
dragging items............ 136
dragging items, buffer menu.............. 17
dragging items, dired L 17
dragging outside Emacs....................... 136
E
e-mail address.............. 33, 75
edebugging testsol 33
elink. ... 30
elisp identifier i 149
elisp testing it 144
ellipSes . .ovv 73
elpa package........ ... oo 106
elpa-devel package o 106
Emacscoooi i 3, 48
Emacs Lisp ... 3
Emacs Lisp compiler error 29
Emacs Lisp variables...................... 32, 114
emacsoutline.............. .o il 71
Emacs Outline mode.................... 7
Emacs package manager 106
Emacs Regression Test (ERT) symbol.......... 29
Emacs Regression Test framework.............. 33
Emacs support...........o.ooiiiiiiii 117
emulation, drag............. ... il 20
enable Hyperbole............... 9, 119
enable Hyperbole mode 49
enable org-mode support...............o 28
enabling URLs in find-file..................... 115
end of line click.............. ... il 140
Engelbarto 76, 97
environment variables..................... 32, 114
equalize windows.............. ..ot 60
eTh. . 34, 144
ert results ... 34
ert tests.o il 33, 34
ert-resultssmode 144
etags entry...... .o i 32
exchanging cells. ... 70
executing tests.......... L 33
exit HyControl........ oo oo 61
expandingo.iiii i 72
explicit buttono ool 23, 24
explicit button creation 43
explicit button deletion 45
explicit button editing 45
explicit button formats......................... 94
explicit button link 30
explicit button renaming....................... 44
explicit button searching....................... 45

Concept Index

explicit button storage.............. 94
explicit button summary........... 45
explicit button, programmatic creation......... 94
explicit link creation............. ... oL 43
eXPOrting .. .ot 72
exporting an outline L L 69
exporting, Koutliner 64
external display 111, 113
external klink......... ... il 74
external program 113
external viewer o ool 113
extracting from tar files........ 156

F

file display function.............. 111
file viewer, Treemacs............covuveeennnn... 17
file, FAST-DEMO. ...t 1
file, hycontrol.el........... L. 61
file, importing ... 71
filename ... i 32
fill prefix. ... 94
flling . .o 70
Find. ..o 51
find-file, browsing URLs 115
flashing buttons 117
flymake. 145
flymake definition............ol 99
flymake keymap oL 145
frame configuration 60
frame configuration, restore................... 119
frame relocate il 59
frame resize....... ... 58
frame, delete........... .. i i 59
frame, lower i 59
frame, make 61
frame, maximize o i, 60
frame, other i 59
frame, percentage resize.......... 60
frame, raiSe. 60
frame, shrink 60
frame, toedge ... 60
frame, zoom i 61
frames control 57
7 32
function 131, 142
function call implicit button.................... 28

181
G
game, gomoku oo 157
gdb . 29
GBIt 142
git commit reference.......... oL 32
gitgrep.......o 32
git log grep/match.............. .ol 32
git reference i 37
github reference........... L 37
gitlab referenceol 38
glink. ... 30
global button........................... 23, 24, 35
global button link.............. 30
global button, modify............. 162
global link creation 25
global menu key bindings 118
gloSSary 97
Gmail Contacts.........oooiiiiiiii ... 83
GNUEMACS .« o ovvi e 7
GNU Hyperbole. ..., 3
GIIUS . ¢ e et e 46, 47
Gnus browsing............ ... oo 155
GNUS push-buttons 29
gOMOKU. ...t 157
Google Contactsovvveenii i 83
BLOD « vttt ettt 29
(€5 =) o PP 51
grepfiles.......... 51
grid of windows oo 57, 119
GIOUPWATE « oottt ettt ettt ittt 97
H
hashtag........ i 33
hattrclass...........o o i 93
hbut class. ...t 93
helm-modeo i 143
HelmFind...... ... i 79
helpbuffer................. .. 146
help, button i 11
help, menu items................. ..ol 50
help, Smart Key ...t 14
hidelevelso i 73
hide inesoviii 73
hide subtree o 72
hide tree........oooiiii i 72
hiding 72
hiding signatures..........o 29
highlight menu keys............ 117
highlighting buttons 117
history..... ..o 52
hook variables 87
horizontal drag............. 18, 135
HTML conversion.............ccoiiiiiinn.. 72
HTML tag pair........cooviiiiiiiiiiii i, 16
http ..o 30
hy: prefix ... 53

HyControl i 57

Concept Index

HyControl corner placement.................... 61
HyControl edge placement 61
HyControl exit............cooiiiiiiiiiii .. 61
HyControl help 57
HyControl quit oo 61
HyControl screen edge offsets 61
HyControl switch modes 61
HyControl toggle modes........................ 61
HyControl windows grid 57
HyNote..... ..o 56
hynote file....... ... i 34
Hyperbole 3
Hyperbole APTo, 95
Hyperbole applications.......................... 8
Hyperbole button drag......................... 20
Hyperbole data model 24
Hyperboledemoo i 1
Hyperbole features............... 7
Hyperbole help ool 15
Hyperbole mail comment....................... 46
Hyperbole mail list.............. 29
Hyperbole main menu.......................... 49
Hyperbole manual 9
hyperbole manual ibtype....................... 32
Hyperbole menubar menu...................... 48
Hyperbole minibuffer menu................. 9, 119
hyperbole popup menu..................o... 49
Hyperbole pulldown menu...................... 48
Hyperbole report ... 28
Hyperbole types ...t 89
Hyperbole version 160
Hyperbole, embedding 95
Hyperbole, obtaining.......................... 106
Hyperbole, starting 49
Hyperbole, system encapsulation............... 95
hyperbole-mode............ L 9
hyperlink o 74
hyperlink anchor............................... 63
hypertext ... 3, 97
HyRolo...o 77
HyRolo commands.................. 79
hyrolo error........... ..o i i 29
hyrolo matches i 157
HyRolomenu............. 79
hyrolomenu......... o L. 81
hywconfig commands............... 85
HyWiki. ... 53
HyWiki Action Key ...t 53
HyWiki activate link............... 55
HyWiki create apage.........cooviiiiio... 55
HyWikidired ... 55
HyWiki documentation 55
HyWiki edit pages........................ ... 55
HyWiki exclude modes................. 54
hywiki existing word 28
HyWiki export to HTML 54
HyWiki find/edit a pagecoovvvninin... 55

HyWiki interactive grep........................ 55

182
HyWiki manualo.o .. 55
HyWikimenu...........ooooiiiiiiiiiiii. .. 55
HyWikimode.... ...t 55
HyWiki Org link format........................ 53
HyWiki Org publish 54
HyWiki programming modes................... 54
HyWiki publish........... oo .. 54
HyWiki publish toweb.................... ... 55
HyWiki publishing directory 54
HyWiki publishing function.................... 54
HyWiki search for Org tags.................... 55
HyWiki section link................ 53
HyWiki treemacs ... 55
hywiki word o 34
hywiki-mode i 34, 53
HyWikiWord i 53
HyWikiWord attribute help.................... 55
HyWikiWord contexts.................oooiii.. 54
HyWikiWord create............................ 53
HyWikiWord highlighting................... ... 54
HyWikiWord interactive grep 55
HyWikiWord link.........o 55
HyWikiWord, outside the wiki................. 53
HyWikiWords outside hywiki-directory......... 55
I
btype ..o 92
ibtype action L 93
ibtype actype ... 92
ibtype argument oo oo 92
ibtype at-p ... 92
ibtype hact i 92
ibtype hynote-file 56
ibtype hywiki-word oLl 54
ibtype ibut:label-set............ oo 92
ibtype predicate i 92
ibtype priorities....... ... i 93
ibtype priority 42
ibtypereturn val........ o oL 92
ibtype, help..... ... i i 93
ibtypes, list of ... 27
ibuffer menu oL 18, 156
idea structuring.......... ... o o ool 76
idstamp.....coooiiii 63, 67
idstamp 0. 67
idstamp attribute........... ... i 75
idstamp counter oLl 67
Nk ..o 30
image display ... 111
IMageS. ..t 157
implicit action button............ 34
implicit button............o 23, 25
implicit button creation........................ 26
implicit button labels.................... 26
implicit button link 30
implicit button names.................. 26
implicit button type................ ... 25, 92

Concept Index

implicit button types.............. ...l 27
implicit link creation.......... 26
Importing............o i i 71
importing afile..........o il 71
importing, Koutliner........................... 64
in-development installation.................... 106
inactive minibuffer.............. ... oL 131
Info browser ... 18
Info browsing 153
Infomanual................... 9
Infonode............o 29
InfoDock 101
inhibit org-mode support................. ... 28
initialization file ol 66
insert item........... oo il 21
inserting tabs.......... il 68
insertion............coiiiiiiii i 71
installation 106
installation, from git 106, 107
installation, pre-release................... 106, 107
installation, stable, 106
instance number o o i 43
interactive cmd char, +1....... 89
interactive cmd char, +K.......... ... oL 89
interactive cmd char, +L........... .o L 89
interactive cmd char, +M....................... 89
interactive cmd char, +Vo oL 89
interactive cmd char, +X 89
interactive computing................. 97
interactive form......... i 89
internal custom display 111
internal display oL 111
internal image display......................... 111
internal klink i 74
internal standard display...................... 111
internal viewer............. .. i, 111
Internet RFC 30, 32
invoking HyControl, 57
invoking Hyperbole 49
ipython........ i 30
isearch........ L 116
issue trackingo oot 31
itemdrag...... ... 21
iteminsert........... ol 21
item throw........ ... i 21
Ivy completion................, 138

J

JUIND MENU. .« .t eens 17, 131
jump to window by letter 20

183
K
kbd function............ ... 30
keell link. ... 30
key binding list i 118
key binding, C-cl 120
key binding, C-c @.............ccoiiiiiiiian. 119
key binding, C-c \........ol 119
key binding, C-c C-1t........ ..., 146
key binding, C-c RET.......... 119
key binding, C-h A 119
key binding, C-h h......... 119
key binding, C-u C-h A....................... 119
key binding, C-xrs.......... ... L. 120
key binding, M-o.......... ... i 119
key binding, M-RET 119
key binding, M-w................ 120
key binding, menuol 50
key binding, smart keys........................ 11
key bindings.......... il 119
key bindings, toggle............ ...l 9
key sequence.......... 30
key series 30
keyboard drags oo 20
keyboard, jump to window 20
keypad ... 59
kill and yank.......... 131, 134, 144
kill region. ... 16
Klink.o 30, 74
klink referent i i 74
klink, activating oo i 74
klink, copying. ... 74
klink, external ool 74
klink, formats............ ..o i 74
klink, inserting............o oL 74
klink, internal........... L 74
klink, to/from Emacs register 74
klink, view spec.......... ... i 74
klink, yanking oo il 74
klinks, ignoring, 75
knowledge transfer.................. 76
Koutline import oL 71
koutline link o i i 30
Koutline mode..............coiiiiiiiiii.. 7
koutlinemode il 71
Koutliner commands........................... 64
Koutliner import/export commands............ 64
Koutliner menu...........ccoooiiiiiiiii... 64
Koutliner, toggle tab behavior.................. 68

Concept Index

L

label separator, changing....................... 66
label separator, default......................... 66
label type........ooo i 73
label type, alpha oL 66, 73
label type, changing............... 66
label type, idstamps oLl 73
label type, legal oL 66, 73
label, button............o i i 24
labeling implicit buttons 26
legal labels........ oL 66
level ... 72,73
line and column............. ... oo L 30
HnKk. oo 74
link action types..........cooiiiiiiiiiiii 39
link button............ ... oo i 21, 24
link creation oL 26, 43
link displayooooiiii i 111
link to explicit button.......................... 30
link to global button........................ ... 30
link to implicit button 30
link, display function............., 111
link, HyWiki section 53
link, HyWikiWordot 53
link, pathname............ 32
link, pathname line and column................ 30
link, viewer program.................. 113
link, web search.......... L. 41
linking, in-place..........o it 24
BHnKS ..o 27
lnter 145
lisp identifier i i 149
Lisp variableso oL 32, 114
] 131, 142
locate files ... 51
logging Smart Key behavior.................... 15
logical rolo searches............. ..., 80
lower frame........ ... 59

M

magit...... ..o 142
mail address 75
mail comment 46
mail hooks........ 88
mail inclusion................... 46
mail reader 46
mailer initialization 46
mailing an outline........... oL 69
mailing buttons.........ol 46
make frame............... 61
make window 60
INAN APTOPOS .+« v ve ettt tiie et 30
INATL PAZE « + v v e e e et e ettt et e e 41
man page references 157
TNAIL PAZES « .« v vvvveee 30
AN . .ttt 70
markdown link................ 32

184
Markdown mode. ..., 77
markup pair ... 131, 142
match lines...............o . it 29, 51
maximize frame............... ... oo 60
maximize window, 60
MENU €Xit. .ottt 50
menu help........... o 50
menu item key bindings............. L 49
menu item selection.............. 50
menu item, Act........... ... i 50
menu item, Activate-Button-in-Buffer.......... 50
menu item, Back-to-Prior-Location............. 52
menu item, Cust/All-Options 110
menu item, Cust/Debug-Toggle 15
menu item,

Cust/Highlight-Menu-Keys-Toggle 117
menu item, Cust/Msg-Toggle-Ebuts 45, 47
menu item, Cust/Org-M-RET.................. 28
menu item, Doc/SmartKeys.................... 11
menu item, Ebut/Create....................... 43
menu item, Ebut/Edit 43
menu item, Ebut/Link 43
menu item, Explicit-Button 43
menu item, Find-File-Accepts-URLs........... 115
menu item, Find-File-URLs................... 115
menu item, Find/Web 51
menu item, FramesControl 57
menu item, Gbut/Link................... 25
menu item, GrepFile........................... 51
menu item, Hist........... L. 52
menu item, HyWiki/Org-M-RET............... 55

menu item,

HyWiki/Org-M-RET/All-Hyperbole-Contexts . . 53]}

menu item,

HyWiki/Org-M-RET /Hyperbole-Buttons-Only . . 55

menu item, HyWiki/Org-M-RET /None......... 53
menu item, Ibut/Act................ ... 26
menu item, Ibut/Activate...................... 26
menu item, Ibut/Create........................ 26
menu item, Ibut/Edit.................... ... 26
menu item, Ibut/Link............ 26
menu item, Ibut/Name......................... 26
menu item, Ibut/Rename 26
menu item, Isearch-Invisible................... 116
menu item, Kotl/Example 63
menu item, LocateFiles 51
menu item, MatchFileBuffers................... 51
menu item, OccurHere 51
menu item, RegexFind 80
menu item, Remove-This-Menu 48
menu item, Removelines....................... 51
menu item, Rolo/Toggle-Rolo-Dates............ 82
menu item, Savelines.......................... 51
menu item, StringFind L 80
menu item, TagFind 80
menu item, Toggle-Isearch-Invisible 116
menu item, WindowsControl 57

menu item, WordFind.......................... 80

Concept Index

menu prefix. i 50
menu quit ... 50
TNENU USE « v ot e et tteee e et iie et e e 48
menu, Butfile.............. ... 50
menu, Button-File 50
menu, Cust 50, 110
menu, Cust/Referents......................... 111
menu, Cust/URL-Display 116, 157
menu, Cust/Web-Search 114
menu, Customize ... 50
menu, Doc.......... ... 50
menu, Documentation.......................... 50
menu, EBut 51
menu, Ebut........... ... i 43
menu, entry/exit commands.................... 50
menu, Explicit-Button 51
menu, Find 51
menu, Find/Web....................... .. 114, 119
menu, Gbut........... 25, 51
menu, Global-Button....................... 25, 51
menu, HyRolo......... 79
menu, HyWikio L. 51, 55
menu, Ibut........ 26, 52
menu, Implicit-Button................... ... 26, 52
menu, KeyBindings 50
menu, Kotl 52
menu, Koutline................ . ..o ... 52
menu, Koutliner 64
menu, Mail-Lists............................... 52
menu, Msg........... ... i 52
menu, Outliner, 52
menu, reload. ...l 50
menu, Rolo.......... 52, 79
IMENU, SCTEEIL .« e vttt et et e 52
menu, top-level........... ...l 50, 131
menu, Types............ o i i 50
menu, Web................. ..., 51, 114, 119
menu, WinConfig.....................ooiinit. 52
menu, Window-Configurations 52
menubar menu, HyRolo............... 79
menubar menu, Koutliner...................... 65
menubar menu, Rolo........................... 79
menubar, Hyperbole menu 48
Messages buffer........ 15
MH-€. e 46
middle mouse key........... ..o 11
minibuffer arguments 15
minibuffer completion............... 15
minibuffer menu................ . oL 49, 131
minibuffer menu bindings 118
minibuffer menus oL 49
minibuffer, buffer menu............. 131
minibuffer, default actions 131
minibuffer, jump menu................ 131
minor mode, hyperbole.................. 9
minor mode, keymap............ oL 119
modeline click oo 133

modeline click and drag........................ 18

185
modeline drag oL 133
modeline drag, move frame..................... 19
modeline, buffer id.............. 17
modeline, buffer menu 17
modeline, bury buffer 17
modeline, dired oL 17
modeline, Info Browser......................... 18
modeline, jump menu.................ooiia... 17
modeline, leftmost character 17
modeline, next buffer 17
modeline, prev buffer 17
modeline, screen command menu............... 18
modeline, Smart Keys.......................... 11
modeline, unbury buffer.............o 17
modeline, view spec............ 73
modes to ignore klinks oL 75
TNOUSE « vttt ettt ettt et e e e 97
mouse bindings oL 50
mouse drag, explicit link creation 43
mouse drag, implicit link creation.............. 26
mouse drag, link creation 43
mouse key bindings............. oL 161
mouse key toggle 120
mouse keys, unshifted..............00l 11
MOUSE SUPPOTt ..ottt 11
mouse, moving treeso i 69
move Window ... 136
moving buttons............ i 24
moving frames............ ... oo 19
multiplier....... ... oo 57
N
name, button i 24
named window configuration................... 85
naming implicit buttons................ 26
TIEWS . ottt ettt et 46
NEWS COMMENtovttin it 47
news hooks i i 88
news reader/poster............. ... il 47
NS 76
no-fill attribute L. 76
normalized label 94
note-taking i 53
NOLES . oottt 56
numeric argument. 57
numeric keypad ool 59

Concept Index

@)

object-oriented code browsing................. 158
obtaining Hyperbole 106
online library oL 28
OO-Browsercovviiiiiiiiiiiii .. 158
option setting.............. ... L 110
option settings.......... ... o il 50
Org ID ..o 138
Org IDs « oot 33
Org link, HyWiki ... 53
Org link, outside Org...................... 32, 138
Org M-RET customize 28, 55
Org M-RET override 28, 53, 55
Orgmode......coovviuiiiiiiiiiiian.. 77, 137
Orgpublish....... 54
Org Roam IDs......... oo ... 33
Orgtables.......coooiiiiiiii .. 68
Org tagS. oo vttt 27
org tags, consult grep.............. 27
org view tags ... 27
Org-modeoovvuiiiiiii i 161
Org-modet 27
org-roam package, 103
other frame........ i 59
other windowoiiiiiiiiiii... 59
outline file suffix......... oL 65
outline label separator 66
outlinemode........................, 68, 71
outline processor.oviiiieinniiea 97
outline structure........... L. 66
outline, all cells............o L. 72
outline, attribute list............... 76
outline, creating oL 65
outline, exporting 69, 72
outline, filling......... i 70
outline, foreign file............ 71
outline, formatting........... oL 71
outline, hiding i 72
outline, HTML conversion...................... 72
outline, importing............. ... ol 69
outline, importing into................ 71
outline, inserting into.......................... 71
outline, label type..........l 66
outline, mailing L 69
outline, motion o ol 69
outline, overview.......... o . 72
outline, show levels 72
outline, showing L 72
outline, top-level, 72
outline, view specs............ oo, 73
outline, viewing.......... oL 72
outline-minor-mode 153
outline-mode i 153
outhiner. 63
outliner commands...................iia 64
outliner keys.o 122
override Org M-RET 28, 53, 55
OVEIVIEW . oo ettt ettt ettt e 72

186
P
package manager.............. 106
paragraph, filling............ L 70
paste region............. . 16
pasting aregion.................. ... 131, 134, 144
patch output. ... 29
PATH-type variable.................cooviinin. 33
pathname....... ... i 32
pathname variables 33
pathname, line and column..................... 30
PAb . 29
permanent identifier........................ 63, 67
pipe character il 73
POPUD MENU .« ettt etttiee e e eiiee e 49
popup menu, HyRolo 79
popup menu, Koutliner 65
popup menu, Rolo............................. 79
posting buttons......... o oo 46
posting Nnews. ... i i 47
pre-release installation 106, 107
precedence, buttons............................ 42
priority of ibtypes........ ... o i 93
programming interface..............., 95
promotion 67
proportional scrolling 104, 140
publish HyWiki.............. oo oo 54
pulldown menu ...t 48
python error........... 29
python traceback........................... 29, 34
Q
quit HyControlo i 61
qUit MEeNUS.ot 50
R
radio target...... i 27
raise frame. 60
rdb-mode....... ... 146
rebalance windows, 18
reference. 32
referent 24
referent displayl 111
referent point i 43
refilling ... 70
region selectiono oL 16
region throw 21
region, active oo i 135
register, klinks........ o ool 74
regression testing oL 144
relative autonumber................ 63
relative identifier.............., 66
reload minibuffer menus........................ 50
reload Smart Key handlers..................... 50
remote file........ 30
remote path 32

remote pathnames................... 115

Concept Index

remove lineso i 51
removing Hyperbole menu 48
replace window buffer.......... 21
Request For Comment...................... 30, 32
resize frame percentage 60
resizing windows........... ... oo 19
restore frame configuration.................... 119
restore window configuration.................. 119
restoring windows. oL 85
RFC ... 30, 32
TIPETED - e 29
Rmail ... 46
TOlO. o 77
roloaddress. ... 33
Rolo commands................. oo 79
roloentry........... Yt
rolofile... ... 7
roloKeys. ... 81
Rolomenu.................o il 79
rolo searching............ i i 80
rolo, auto-expanding entries.................... 81
rolo, buttons in............ ... i, s
rolo, datestamps il 82
rolo, editing........ ... 82
rolo, extending amatch..................... ... 81
rolo, finding matches............ 81
rolo, hiding entries.......... 81
rolo, highlighting matches 81, 83
rolo, interactive searching 81
rolo, locating aname................ 81
rolo, moving through matches.................. 81
rolo, moving to entries............ 81
rolo, outline of entries.......................... 81
rolo, personalo il 82
rolo, quittingo i 82
rolo, search again 81
rolo, showing entries 81
rolo, top-level entries.................. 81
root cell.o 65, 67
running tests ... o oo 33

S

save lines ... i i 51
saving window configurations................... 85
SCIeem .« vttt 104
16 41 & PP 57
screen, edge offsets......... il 61
scrolling ... 104, 140
Search.o 51, 116
search engines menu 114
search, HyWiki tag o .. 55
searching the web 51, 119
searching, rolo............ol 80
selection 16
selection, menu items ..., 50
semicolon-separated paths...................... 33

seriesof keys....... i 30

187
Seb . 131, 142
setting the view spec......... 73
sexp selection.......... ... o i 16
SGML tag pair ... 16
show subtree.......... il 72
Show treeo 72
showing. 72
shrink frame......ol 60
shrink window i 60
sidedragcoooiiiii i 132
signatures, hiding L 29
Smart Key ... 11, 104, 161
smart key assignments................. 11
smart key commands............. ... 0. 11
Smart Key debugging.............. 15
Smart Key help.............ooooiiiiiL. 14
Smart Key operation........................... 11
Smart Key summary........................ ... 11
Smart Key, default context................ 14, 159
Smart Key, reload.......... L 50
Smart Keyboard Keys 139
Smart Keys in minibuffer 15
smart keys, unshifted 11
smart marking.......... ... 16
Smart Menu..........oooiiiiiiiiiiii i, 141
Smart Mouse Key........... 131, 144
smart mouse key drag............. 18
Smart Mouse Key drag 45
Smart Mouse Key toggle...................... 120
Smart Mouse Keys.................c.oit. 131
5307 5 0 < 27
smart selection............. ... o ool 16
SIIIETEE . o v vttt ittt 28
social media ... i i 33
social reference oo i 33
source line......... o i 29
Source point 43
splittingacell i 70
stable release installation 106
stack frame.........ol 29, 30, 34
star outline....... i i 71
starting HyControl............ 57
starting Hyperbole.............., 49
storage manager i 94
Straight package manager..................... 107
string.......o o 131, 142
SUDINENUS . .« v ve vttt 50
submodes........... 57
subtree, hide.......... i i 72
subtree, show, 72
swap buffers......... ... 19
swap window buffers........................... 21
SWAPPIINE -« vt 61
system encapsulation................ ... 95

Concept Index

T

table of contents........................ 31, 32, 41
tabs, inserting il 68
Bag .o 32
tagsfile. 32
TAGS file. ..o 32
tar archive browsing, 156
terminal use oo 23
test results........o i 34
testing ... 33, 34
esStS . oo 34
Texinfo cross-reference 29
Texinfo manual L 9
text file.. ..o 71
thing ... 131, 142
things ... 16
throw item........ o i 21
throw region......... ... o il 21
thumbnails o 157
toc action type........ ...l 41
toc implicit button type............ 31
todotxt-mode........... ... oo 159
toggle HyControl mode 61
toggle hywiki-mode L. 53
toggle key bindings...........o 9
toggling blank lines 73
top-level celll 65, 67
top-level menu............. . ..ol 50
top-level view..... i 72
Tramp ... 32, 116
transposing cells L 70
tree, COPYINg. ... 68
tree, demoting oLl 67
tree, exporting............. . oo oo 69
tree, filling....... 70
tree, hide subtree 72
tree, killing 67
tree, mailing........... i 69
tree, MOVINg 68
tree, promoting o i il 67
tree, showo o 72
tree, show subtree...........ol 72
Treemacs . ..o 17, 138
Treemacs item drag ..., 20
troubleshooting Smart Keys.................... 15
tutorial ... 1
type definition........ o o 88
type redefinition........... oL 42, 88
types, implicit button............... 93

188
U
unbury buffer......... ... o 17
unburying ... oo 60
UNIX manual............ooooiiiiiiiiiian, 30
unshifted mouse bindings 11
unshifted mouse keys oL 11
URL ..o 32, 41, 157
URLs, abbreviated......................... ... 116
URLs, using with find-file..................... 115
TSE CASES . - o v et tttee e ettt et 50
USENET ... 46, 47
USETTIAITIE .« . v ettt e e e et e e e ee e e 33
\V
variable display implicit button 28
variable setting i 110
variables. 87
VECHOT. .ottt 131, 142
version control..................... 32, 37, 38, 142
version description............... ..o 160
vertical drag il 18, 135
Vertico completion.................ooia... 15
VIEO « v e vt 41
VI OW .« ettt 72
view mode.o 143
VIEW SPEC - -t e e e e e e e 73
view spec, all lines and levels................... 73
view spec, blank lines.......................... 73
view spec, changing................. 73
view spec, characters........................... 73
view spec, ellipses.......... ... il 73
view spec, example............ ... ool 73
view spec, klink......o ol 74
view spec, label type.......... ... o 73
view spec, lines percell 73
view spec, setting ...l 73
view spec, show levels.......................... 73
virtual numeric keypad............. 59
VM 46
%%
W 157
weonfig commands. ... 85
web pages, displaying 115
web search...... o i 51
web search link oL 41
web search menu......................... 114, 119
where to display 111
WIKT 53
wikimenu................. ... 51
WikiWord ... 53
window by letter...........o i 20
window configuration 60
window configuration commands............... 85
window configuration drag 19

window configuration ring.............. 85

Concept Index

window configuration, restore 119
window configurations 85
window link button.............. 21
window system ... i 113
window, clone 20, 60, 136
window, make i 60
window, maximize i 60
WIndow, MOVEottt 136
window, other i 59
window, shrink.......... L. 60
window, swap buffer L 19
WIndow, ZOOMovuriii i 61
WINAOWS .« oo 97
windows control............ ... i 57
windows grid........... oo 57, 119
windows, balancel 60
windows, equalize................., 60
windows, rebalance oL 18
WOTd WIAD « « e ettt ettt et 70

189
World-wide Web.................. ... 32, 41, 157
WWW 32, 41, 157
X
XAD . 29
XML tag pair..........oooiii i 16
Y
yank region........ oo 16
yank, reformatting......... o L 88
yankingol 131, 134, 144
youtube 41

Z

ZOOIINEG . oottt 61

	1 Introduction
	Manual Overview
	Motivation
	Hyperbole Overview
	Mail Lists

	2 Usage
	Invocation
	Documentation
	Hyperbole Hooks

	3 Smart Keys
	Smart Key Bindings
	Smart Key Operations
	Smart Key Argument Selection
	Smart Key Debugging
	Smart Key Thing Selection
	Smart Mouse Key Modeline Clicks
	Smart Mouse Key Drags
	Creating and Deleting Windows
	Saving and Restoring Window Configurations
	Resizing Windows
	Moving Frames
	Dragging Buffers, Windows and Items
	Swapping Buffers
	Displaying Buffers
	Cloning Windows
	Displaying Items
	Keyboard Drags

	4 Buttons
	Explicit Buttons
	Global Buttons
	Implicit Buttons
	Implicit Button Types
	Action Buttons

	Button Files
	Action Types
	Button Type Precedence
	Utilizing Explicit Buttons
	Creation
	Creation Via Menus
	Creation Via Buffer Link
	Creation Via Assist Key Drags

	Renaming
	Deletion
	Editing
	Searching and Summarizing
	Buttons in Mail
	Buttons in News

	5 Menus
	6 HyWiki
	HyWikiWords
	Publish HyWiki
	HyWiki Menu

	7 HyNote
	8 HyControl
	9 Koutliner
	Menu Commands
	Creating Outlines
	Autonumbering
	Idstamps
	Editing Outlines
	Adding and Killing
	Promoting and Demoting
	Relocating and Copying
	Moving Around
	Filling
	Transposing
	Splitting and Appending
	Inserting and Importing
	Exporting

	Viewing Outlines
	Hiding and Showing
	View Specs

	Klinks
	Cell Attributes
	Koutliner History

	10 HyRolo
	HyRolo Concepts
	Rolo Menu
	HyRolo Searching
	HyRolo Keys
	HyRolo Settings

	11 Window Configurations
	12 Developing with Hyperbole
	Hook Variables
	Creating Types
	Creating Action Types
	Creating Implicit Button Types
	Action Button Link Types
	Implicit Button Link Types
	Programmatic Implicit Button Types

	Explicit Button Technicalities
	Button Label Normalization
	Operational and Storage Formats
	Programmatic Button Creation

	Encapsulating Systems
	Embedding Hyperbole

	A Glossary
	B Setup
	Installation
	Elpa Stable Package Installation (Emacs Package Manager)
	Elpa In-Development Package Installation
	Git In-Development Package Installation (Straight Package Manager)
	Manual Tarball Archive Installation

	Customization
	Referent Display
	Internal Viewers
	External Viewers
	Link Variable Substitution
	Web Search Engines
	Using URLs with Find-File
	Invisible Text Searches
	Highlight Menu Key Toggle
	Configuring Button Colors

	C Hyperbole Key Bindings
	Binding Minibuffer Menu Items
	Default Hyperbole Bindings
	Testing

	D Koutliner Keys
	E Smart Key Reference
	Smart Mouse Keys
	Minibuffer Menu Activation
	Thing Selection
	Side-by-Side Window Resizing
	Modeline Clicks and Drags
	Smart Mouse Drags between Windows
	Smart Mouse Drags within a Window
	Smart Mouse Drags outside a Window

	Smart Keyboard Keys
	Smart Key - Company Mode
	Smart Key - Org Mode
	Smart Key - Ivy
	Smart Key - Treemacs
	Smart Key - Dired Sidebar Mode
	Smart Key - Emacs Pushbuttons
	Smart Key - Argument Completion
	Smart Key - ID Edit Mode
	Smart Key - Emacs Cross-references (Xrefs)
	Smart Key - Smart Scrolling
	Smart Key - Smart Menus
	Smart Key - Dired Mode
	Smart Key - Magit Mode
	Smart Key - Delimited Things
	Smart Key - Hyperbole Buttons
	Smart Key - View Mode
	Smart Key - Helm Mode
	Smart Key - ERT Results Mode
	Smart Key - Occurrence Matches
	Smart Key - The Koutliner
	Smart Key - Flymake Mode
	Smart Key - RDB Mode
	Smart Key - Help Buffers
	Smart Key - Custom Mode
	Smart Key - Bookmark Mode
	Smart Key - Pages Directory Mode
	Smart Key - Python Source Code
	Smart Key - C Source Code
	Smart Key - C++ Source Code
	Smart Key - Assembly Source Code
	Smart Key - Lisp Source Code
	Smart Key - Java Source Code
	Smart Key - JavaScript Source Code
	Smart Key - Objective-C Source Code
	Smart Key - Fortran Source Code
	Smart Key - Identifier Menu Mode
	Smart Key - Calendar Mode
	Smart Key - Man Page Apropos
	Smart Key - Emacs Outline Mode
	Smart Key - Info Manuals
	Smart Key - Email Readers
	Smart Key - GNUS Newsreader
	Smart Key - Buffer Menus
	Smart Key - Tar File Mode
	Smart Key - Man Pages
	Smart Key - WWW URLs
	Smart Key - HyRolo Match Buffers
	Smart Key - Image Thumbnails
	Smart Key - Gomoku Game
	Smart Key - The OO-Browser
	Smart Key - Todotext Mode
	Smart Key - Default Context

	F Suggestion or Bug Reporting
	G Questions and Answers
	H Future Work
	I References
	Key Index
	Function, Variable and File Index
	Concept Index

